Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

Appl Microbiol Biotechnol

State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, China.

Published: September 2017

AI Article Synopsis

  • Acetate plays a crucial role in breaking down crude oil anaerobically and is important for producing methane in oil reservoirs.
  • The study examined how iron oxides like magnetite and β-FeOOH (akaganéite) affect methane production from acetate in high-temperature petroleum production water.
  • Results showed that methane production increased significantly with magnetite and was even faster with β-FeOOH, suggesting these iron oxides alter both the rate of methane production and the microbial communities involved in acetate metabolism.

Article Abstract

Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (FeO), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (FeO) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (FeO) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-017-8422-2DOI Listing

Publication Analysis

Top Keywords

acetate
13
methane production
12
syntrophic acetate
12
acetate oxidizers
12
iron oxides
8
production water
8
water high-temperature
8
high-temperature petroleum
8
petroleum reservoir
8
β-feooh akaganéite
8

Similar Publications

Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).

Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

This study aimed to investigate the effects of and on the chemical composition, fermentation characteristics, bacterial communities, and predicted metabolic pathways of whole-plant triticale silage (). Fresh triticale harvested at the milk stage was ensiled in sterile distilled water (CON), (ST), (LP), and a combination of and (LS) for 3, 7, 15, and 30 days. During ensiling, the pH and water-soluble carbohydrate (WSC) content in the inoculated groups was significantly lower than those in the CON group ( < 0.

View Article and Find Full Text PDF

Biomineralization reaction from nanosized calcium silicate: A new method for reducing dentin hypersensitivity.

J Dent Sci

January 2025

Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Background/purpose: This study assessed the ability of experimental materials consisting of dicalcium silicate (DCS) and tricalcium silicate (TCS) with nanosized particles to form intratubular crystals under phosphate-buffered saline (PBS) and the effect on dentin permeability reduction.

Materials And Methods: By isolating the cervical part of the extracted premolars, 195 specimens were obtained. Two experimental materials (DCS/TCS and TCS) were applied to the dentin surface by brushing and stored in PBS (n = 65).

View Article and Find Full Text PDF

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!