The present work focuses on a low-cost, simple, and green synthesis of silver nanoparticles (AgNPs) by mixing AgNO solution with the extract of Spirulina platensis (SP) without any chemical reducing and/or capping agents. The green synthesis of AgNPs was confirmed by the color change from colorless to yellowish brown. The biosynthesis of AgNPs was further confirmed by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), biological transmission electron microscopy (Bio-TEM), and energy dispersive X-ray analysis (EDX). The UV-vis spectroscopy results showed the surface plasmon resonance (SPR) of AgNPs around 450 nm. Bio-TEM analysis revealed that the Ag nanoparticles were well dispersed with average range of 5-50 nm. XRD results indicated that the green synthetic process produced face-centered cubic structure of AgNPs. FT-IR spectroscopy analysis showed that the bioactive molecules from the SP extract believed to be the responsible for the reduction of Ag ions. Furthermore, the synthesized AgNPs were evaluated against pathogens such as Staphylococcus sp. and Klebsiella sp. The AgNPs (1-4 mM) extensively reduced the growth rate of the pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-9772-0 | DOI Listing |
Sci Rep
January 2025
Department of Agricultural Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.
This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:
This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.
View Article and Find Full Text PDFTalanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!