A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). | LitMetric

The objective of this study was to investigate the effects of phosphogypsum (PG) amendment on the physiochemical proprieties of saline and agricultural soils along with the growth, productivity and antioxidant enzyme activities of tomato plants ( Solanum lycopersicum L.) grown on the amended soils under controlled conditions. Obtained results showed that the amendment of saline soil (H) by PG induced a decrease in pH as well as in electrical conductivity. However, for the non saline soil (MC), there was a decrease in pH associated with an increase in electrical conductivity. For both soils, PG amendment led to an increase in Calcium (Ca) and sodium (Na), and a decrease in potassium (K) in plant tissues. Cadmium (Cd), Zinc (Zn) and Chromium (Cr) contents in different parts of plants increased in proportion with PG concentration in the soils. Apart from Cd, all the analyzed metals in tomato fruit were found to be below the recommended maximum allowable concentration (MAC). Our results showed that PG application, at doses not exceeding 20%, seems to be beneficial for growth, photosynthetic activity and productivity of tomato plants as well as in decreasing salinity of saline soils. In these conditions, the use of PG could be a promising project for the rehabilitation of marginalized and saline ecosystems with either ornamental or non-fruit species. For both soils, a significant accumulation of MDA in shoots was detected, reflecting cell membrane damage especially when the PG amendment reached 20%. Beyond 20 and 40% PG, tomato plants developed an enzymatic antioxidant defense system in response to salinity and heavy metal stress. However, at 80% PG, enzymes activities were significantly inhibited.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-017-1836-xDOI Listing

Publication Analysis

Top Keywords

tomato plants
12
phosphogypsum amendment
8
amendment saline
8
saline agricultural
8
agricultural soils
8
soils growth
8
growth productivity
8
productivity antioxidant
8
antioxidant enzyme
8
enzyme activities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!