HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Studies have shown that the association of Nef with the inner leaflet of the plasma membrane and with endocytic and perinuclear vesicles is essential for most activities of Nef. Using purified recombinant proteins in pull-down assays and by co-immunoprecipitation assays we demonstrate that Nef binds directly and specifically to all GABARAP family members, but not to LC3 family members. Based on nuclear magnetic resonance (NMR) experiments we showed that Nef binds to GABARAP via two surface exposed hydrophobic pockets. S53 and F62 of GABARAP were identified as key residues for the interaction with Nef. During live-cell fluorescence microscopy an accumulation of Nef and all GABARAP family members in vesicular structures throughout the cytoplasm and at the plasma membrane was observed. This plasma membrane accumulation was significantly reduced after knocking down GABARAP, GABARAPL1 and GABARAPL2 with respective siRNAs. We identified GABARAPs as the first known direct interaction partners of Nef that are essential for its plasma membrane localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519724PMC
http://dx.doi.org/10.1038/s41598-017-06319-4DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
family members
16
gabarap family
12
nef
9
hiv-1 nef
8
membrane localization
8
nef binds
8
gabarap
6
plasma
5
membrane
5

Similar Publications

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!