Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is well established that blindness induces changes in cerebral function and structure, namely affecting the somatomotor regions. However, the behavioural significance of these changes on the motor system, and on motor learning in particular, remains elusive. In this study, we used a modified version of the serial reaction time task (SRTT) with auditory cues to assess sequence specific and non-specific motor learning in blind adults and sighted controls, and compare them with sighted controls performing the classic visual SRTT. Our results show that the auditory SRTT faithfully replicates the typical learning pattern obtained with the visual SRTT. On the auditory SRTT, blind individuals consistently showed faster reaction times than sighted controls, being at par with sighted individuals performing the visual SRTT. On the other hand, blind participants displayed a particular pattern of motor learning in comparison to both sighted groups; while controls improved prominently on sequence specific learning, blind individuals displayed comparable performance on both specific and non-specific learning, markedly outperforming the control groups on non-specific learning. These results show that blindness, in addition to causing long-term changes in cortical organisation, can also influence dynamic neuroplastic mechanisms in systems beyond those typically associated with compensatory sensory processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519757 | PMC |
http://dx.doi.org/10.1038/s41598-017-04831-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!