Greater than 50% of estrogen receptor (ER)-positive breast cancers coexpress the progesterone receptor (PR), which can directly and globally modify ER action to attenuate tumor growth. However, whether this attenuation is mediated only through PR-ER interaction remains unknown. To address this question, we assessed tumor growth in ER/PR-positive patient-derived xenograft models of breast cancer, where both natural and synthetic progestins were found to antagonize the mitogenic effects of estrogens. Probing the genome-wide mechanisms by which this occurs, we documented that chronic progestin treatment blunted ER-mediated gene expression up to 2-fold at the level of mRNA transcripts. Unexpectedly, <25% of all ER DNA binding events were affected by the same treatment. The PR cistrome displayed a bimodal distribution. In one group, >50% of PR binding sites were co-occupied by ER, with a propensity for both receptors to coordinately gain or lose binding in the presence of progesterone. In the second group, PR but not ER was associated with a large fraction of RNA polymerase III-transcribed tRNA genes, independent of hormone treatment. Notably, we discovered that PR physically associated with the Pol III holoenzyme. Select pre-tRNAs and mature tRNAs with PR and POLR3A colocalized at their promoters were relatively decreased in estrogen + progestin-treated tumors. Our results illuminate how PR may indirectly impede ER action by reducing the bioavailability of translational molecules needed for tumor growth. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600857PMC
http://dx.doi.org/10.1158/0008-5472.CAN-16-3541DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
breast cancer
8
rna polymerase
8
cancer suppression
4
suppression progesterone
4
progesterone receptors
4
receptors mediated
4
mediated modulation
4
modulation estrogen
4
estrogen receptors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!