Optical imaging of surface chemistry and dynamics in confinement.

Science

Laboratory for Fundamental BioPhotonics, Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: August 2017

We imaged the interfacial structure and dynamics of water in a microscopically confined geometry, in three dimensions and on millisecond time scales, with a structurally illuminated wide-field second harmonic microscope. The second harmonic images reported on the orientational order of interfacial water, induced by charge-dipole interactions between water molecules and surface charges. The images were converted into surface potential maps. Spatially resolved surface acid dissociation constant (p) values were determined for the silica deprotonation reaction by following pH-induced chemical changes on the curved and confined surfaces of a glass microcapillary immersed in aqueous solutions. These values ranged from 2.3 to 10.7 along the wall of a single capillary because of surface heterogeneities. Water molecules that rotate along an oscillating external electric field were also imaged.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aal4346DOI Listing

Publication Analysis

Top Keywords

second harmonic
8
water molecules
8
surface
5
optical imaging
4
imaging surface
4
surface chemistry
4
chemistry dynamics
4
dynamics confinement
4
confinement imaged
4
imaged interfacial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!