Based on the unique characteristics of the combination of fullerene and gold nanoparticles, we successfully designed a new and facile nanocomposite (Au@nano-C60) to fabricate an aptasensor for the ultra-sensitive and selective detection of TNT. The gold nanoparticles decorated fullerene onto a glassy carbon electrode was prepared using an electrochemical method by the in situ generation of Au nanoparticles onto the surface of the glassy carbon electrode modified with activated fullerene. Successively, the NH-Apt as a receptor molecule of 2,4,6-Trinitrotoluen was covalently attached onto the modified electrode surface with the resultant nanocomposite. With the addition of the target onto the aptasensor surface and the formation of target/Apt complex, a linear response was obtained from 0.50 fM to 5 μM as well as a limit of detection down to 0.17 fM. The proposed aptasensor shows a wider linear response range and lower limit of detection for the specific detection of 2,4,6-Trinitrotoluen. This newly developed strategy will pave the way to partly meet the requirements in the field of homeland security and public safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2017.07.017DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
glassy carbon
8
carbon electrode
8
linear response
8
limit detection
8
au@nano-c60 nanocomposite
4
nanocomposite enhanced
4
enhanced sensing
4
sensing platform
4
platform modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!