Hypercapnic acidosis (HCA) has beneficial effects in experimental models of lung injury by attenuating inflammation and decreasing pulmonary edema. However, HCA increases pulmonary vascular pressure that will increase fluid filtration and worsen edema development. To reconcile these disparate effects, we tested the hypothesis that HCA inhibits endothelial mechanotransduction and protects against pressure-dependent increases in the whole lung filtration coefficient (K). Isolated perfused rat lung preparation was used to measure whole lung filtration coefficient (K) at two levels of left atrial pressure (P = 7.5 versus 15 cm HO) and at low tidal volume (LV) versus standard tidal volume (STV) ventilation. The ratio of K/K was used as the index of whole lung permeability. Double occlusion pressure, pulmonary artery pressure, pulmonary capillary pressures, and zonal characteristics (ZC) were measured to assess effects of HCA on hemodynamics and their relationship to K/K. An increase in P from 7.5 to 15 cm HO resulted in a 4.9-fold increase in K/K during LV and a 4.8-fold increase during STV. During LV, HCA reduced K/K by 2.7-fold and reduced STV K/K by 5.2-fold. Analysis of pulmonary hemodynamics revealed no significant differences in filtration forces in response to HCA. HCA interferes with lung vascular mechanotransduction and prevents pressure-dependent increases in whole lung filtration coefficient. These results contribute to a further understanding of the lung protective effects of HCA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841912PMC
http://dx.doi.org/10.1177/2045893217724414DOI Listing

Publication Analysis

Top Keywords

filtration coefficient
16
lung filtration
12
hypercapnic acidosis
8
hca
8
lung
8
pressure-dependent increases
8
increases lung
8
tidal volume
8
pressure pulmonary
8
effects hca
8

Similar Publications

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Development of Hollow Fiber Membranes Suitable for Outside-In Filtration of Human Blood Plasma.

Membranes (Basel)

January 2025

Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, University of Twente, Zuidhorst 28, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients' blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration).

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Slow sand filters with variable filtration rates for rainwater purification: Microecological differences between biofilm and water phases.

J Environ Manage

January 2025

China Architecture Design and Research Group, Beijing, 100044, PR China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.

Slow sand filters (SSFs) have been increasingly applied to rainwater purification in recent years, but the response of SSFs to fluctuating rainfall, as well as the biofilm- and water-phase microecology in SSFs are still poorly understood. This study systematically evaluated the rainwater purification performance of SSFs and compared the bacterial community structure, assembly processes and molecular ecological interactions between the biofilm and water phases. The activated carbon and activated alumina filters exhibited the best performance for NH-N (18.

View Article and Find Full Text PDF

Purpose: The estimated glomerular filtration rate (eGFR) has historically been calculated with a race-coefficient multiplier (RCM); however, the RCM has been broadly criticized as inaccurate and a potential contributor to exacerbating disparities. We evaluated the impact of the RCM on eGFR and examined the 30-day post-cystectomy complications in a muscle-invasive bladder cancer cohort.

Materials And Methods: We retrospectively analyzed patients diagnosed with MIBC who underwent cystectomy in the ACS NSQIP database from 2006 to 2020 using CPT and ICD codes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!