Background: A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env.

Methods: Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination.

Results: All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF.

Conclusion: This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation.

Trial Registration: ClinicalTrials.gov NCT01571960.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519050PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179597PLOS

Publication Analysis

Top Keywords

dna prime
8
modified vaccinia
8
vaccinia ankara
8
full dose
8
dose dgdgm_m
8
dgdgm_m dgdgmm_m
8
dgdgmm_m regimens
8
immunogenicity novel
4
novel clade
4
hiv-1
4

Similar Publications

Unlabelled: strain E264 ( E264) and close relatives stochastically duplicate a 208.6 kb region of chromosome I via RecA-dependent recombination between two nearly identical insertion sequence elements. Because homologous recombination occurs at a constant, low level, populations of E264 are always heterogeneous, but cells containing two or more copies of the region (Dup+) have an advantage, and hence predominate, during biofilm growth, while those with a single copy (Dup-) are favored during planktonic growth.

View Article and Find Full Text PDF

Human RAD52 is a prime target for synthetical lethality approaches to treat cancers with deficiency in homologous recombination. Among multiple cellular roles of RAD52, its functions in homologous recombination repair and protection of stalled replication forks appear to substitute those of the tumor suppressor protein BRCA2. However, the mechanistic details of how RAD52 can substitute BRCA2 functions are only beginning to emerge.

View Article and Find Full Text PDF

[Current Knowledge of Base Editing and Prime Editing].

Mol Biol (Mosk)

December 2024

Institute of Functional Genomics, Moscow State University, Moscow, 119991 Russia.

Modern genetic engineering technologies, such as base editing and prime editing (PE), have proven to provide the efficient and reliable genome editing tools that obviate the need for donor templates and double-strand breaks (DSBs) introduced in DNA. Relatively new, they quickly gained recognition for their accuracy, simplicity, and multiplexing capabilities. The review summarizes the new literature on the technologies and considers their architecture, methods to create editors, specificity, efficiency, and versatility.

View Article and Find Full Text PDF

CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach.

View Article and Find Full Text PDF

[Epigenetics and cancer: the role of DNA methylation].

Med Sci (Paris)

December 2024

Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France.

Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!