Fetal alcohol spectrum disorder (FASD), the result of fetal alcohol exposure (FAE), affects 2-11% of children worldwide, with no effective treatments. Hippocampus-based learning and memory deficits are key symptoms of FASD. Our previous studies show hypothyroxinemia and hyperglycemia of the alcohol-consuming pregnant rat, which likely affects fetal neurodevelopment. We administered vehicle, thyroxine (T4) or metformin to neonatal rats post FAE and rats were tested in the hippocampus-dependent contextual fear-conditioning paradigm in adulthood. Both T4 and metformin alleviated contextual fear memory deficit induced by FAE, and reversed the hippocampal expression changes in the thyroid hormone-inactivating enzyme, deiodinase-III (Dio3) and insulin-like growth factor 2 (Igf2), genes that are known to modulate memory processes. Neonatal T4 restored maternal allelic expressions of the imprinted Dio3 and Igf2 in the adult male hippocampus, while metformin restored FAE-caused changes in Igf2 expression only. The decreased hippocampal expression of DNA methyltransferase 1 (Dnmt1) that maintains the imprinting of Dio3 and Igf2 during development was normalized by both treatments. Administering Dnmt1 inhibitor to control neonates resulted in FAE-like deficits in fear memory and hippocampal allele-specific expression of Igf2, which were reversed by metformin. We propose that neonatal administration of T4 and metformin post FAE affect memory via elevating Dnmt1 and consequently normalizing hippocampal Dio3 and Igf2 expressions in the adult offspring. The present results indicate that T4 and metformin, administered during the neonatal period that is equivalent to the third trimester of human pregnancy, are potential treatments for FASD and conceivably for other neurodevelopmental disorders with cognitive deficits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775940 | PMC |
http://dx.doi.org/10.1038/mp.2017.129 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
October 2024
Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. Electronic address:
External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference.
View Article and Find Full Text PDFPoult Sci
April 2024
Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822. Electronic address:
The broilers' health and growth performance are affected by egg quality, incubation conditions, and posthatch management. Broilers are more susceptible to heat stress because they have poor thermoregulatory capacity. So, it is crucial to develop a strategy to make chicks thermotolerant and cope with heat stress in post-hatch life.
View Article and Find Full Text PDFGenome Biol
December 2019
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France.
Background: Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells.
View Article and Find Full Text PDFSci China Life Sci
January 2020
State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
Paternal imprinted genes (H19 and Gtl2) are pivotal for prenatal embryonic development in mice. Nongrowing oocytes and sperm- or oocyte-originated haploid embryonic stem cells (haESCs) carrying both H19-DMR (differentially DNA-methylated region) and IG (intergenic)-DMR deletions that partially mimic paternal imprinting of H19-Igf2 and Dlk1-Dio3 can be employed as sperm replacement to efficiently support full-term embryonic development. However, how H19-DMR and IG-DMR act together to regulate embryonic development is still largely unknown.
View Article and Find Full Text PDFNat Commun
December 2018
Department of Pediatrics, Stanford University, Stanford, 94305, CA, USA.
miR-122 is a highly expressed liver microRNA that is activated perinatally and aids in regulating cholesterol metabolism and promoting terminal differentiation of hepatocytes. Disrupting expression of miR-122 can re-activate embryo-expressed adult-silenced genes, ultimately leading to the development of hepatocellular carcinoma (HCC). Here we interrogate the liver transcriptome at various time points after genomic excision of miR-122 to determine the cellular consequences leading to oncogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!