Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empirical estimates of their relative importance. In this study, we focused on Eastern Mediterranean, a region exposed to an invasion of species of Red Sea origin, extreme climate change, and high fishing pressure. We estimated changes in fish abundance using two fish trawl surveys spanning a 20-year period, and correlated these changes with estimated sensitivity of species to the different stressors. We estimated sensitivity to invasion using the trait similarity between indigenous and nonindigenous species; sensitivity to fishing using a published composite index based on the species' life-history; and sensitivity to climate change using species climatic affinity based on occurrence data. Using both a meta-analytical method and random forest analysis, we found that for shallow-water species the most important driver of population size changes is sensitivity to climate change. Species with an affinity to warm climates increased in relative abundance and species with an affinity to cold climates decreased suggesting a strong response to warming local sea temperatures over recent decades. This decrease in the abundance of cold-water-associated species at the trailing "warm" end of their distribution has been rarely documented. Despite the immense biomass of nonindigenous species and the presumed high fishing pressure, these two latter factors seem to have only a minor role in explaining abundance changes. The decline in abundance of indigenous species of cold-water origin indicates a future major restructuring of fish communities in the Mediterranean in response to the ongoing warming, with unknown impacts on ecosystem function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.13835 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK.
The contribution of health care to environmental and climate crises is significant, under-addressed, and with consequences for human health. This editorial is a call to action. Focusing on pharmaceuticals as a major environmental threat, we examine pharmaceutical impacts across their lifecycle, summarising greenhouse gas emissions, pollution, and biodiversity loss, and outlining challenges and opportunities to reduce this impact.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil.
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.
View Article and Find Full Text PDFViruses
December 2024
Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
Neglected tropical diseases (NTDs) represent a group of chronic and debilitating infections that affect more than one billion people, predominantly in low-income communities with limited health infrastructure. This paper analyzes the factors that perpetuate the burden of NTDs, highlighting how poor health infrastructure, unfavorable socioeconomic conditions and lack of therapeutic resources exacerbate their impact. The effectiveness of current interventions, such as mass drug administration (MDA) programs and improved sanitation, in reducing disease prevalence is examined.
View Article and Find Full Text PDFViruses
December 2024
School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia.
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!