The interaction of amino acids with macrocyclic pH probes of pseudopeptidic nature.

Photochem Photobiol Sci

Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Av. Sos Baynat, s/n, E-12071 Castellón, Spain.

Published: August 2017

The fluorescence quenching, by a series of amino acids, of pseudopeptidic compounds acting as probes for cellular acidity has been investigated. It has been found that amino acids containing electron-rich aromatic side chains like Trp or Tyr, as well as Met quench the emission of the probes mainly via a collisional mechanism, with Stern-Volmer constants in the 7-43 M range, while other amino acids such as His, Val or Phe did not cause deactivation of the fluorescence. Only a minor contribution of a static quenching due to the formation of ground-state complexes has been found for Trp and Tyr, with association constants in the 9-24 M range. For these ground-state complexes, a comparison between the macrocyclic probes and an open chain analogue reveals the existence of a moderate macrocyclic effect due to the preorganization of the probes in the more rigid structure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7pp00167cDOI Listing

Publication Analysis

Top Keywords

amino acids
16
macrocyclic probes
8
trp tyr
8
ground-state complexes
8
probes
5
interaction amino
4
acids
4
acids macrocyclic
4
probes pseudopeptidic
4
pseudopeptidic nature
4

Similar Publications

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

Tuning of sulfur flows and sulfur seed metabolism in oilseed rape facing sulfate limited conditions.

J Exp Bot

January 2025

Normandie Univ, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France.

The response of oilseed rape to sulfur (S) restriction usually consists of increasing the components of S utilization efficiency (absorption, assimilation and remobilization) to provide S to seeds. However, source-sink relationships and S management in developing seeds under sulfate restriction are poorly understood. To address this, impacts of sulfate restrictions applied at "visible bud" or "start of pod filling" stages were studied with two genotypes (Aviso, Capitol) showing similar seed yield but higher seed weight and lower number of seeds per plant for Capitol under non-limited conditions.

View Article and Find Full Text PDF

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!