Local decomposition of imaginary polarizabilities and dispersion coefficients.

Phys Chem Chem Phys

KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry and Biology, SE-106 91 Stockholm, Sweden.

Published: August 2017

We present a new way to compute the two-body contribution to the dispersion energy using ab initio theory. By combining the complex polarization propagator method and the LoProp transformation, local contributions to the Casimir-Polder interaction is obtained. The full dispersion energy in dimer systems consisting of pairs of molecules including H, N, CO, CH, pyridine, and benzene is investigated, where anisotropic as well as isotropic models of dispersion are obtained using a decomposition scheme for the dipole-dipole polarizability. It is found that the local minima structure of the π-cloud stacking of the benzene dimer is underestimated by the total molecular dispersion, but is alleviated by the inclusion of atomic interactions via the decomposition scheme. The dispersion energy in the T-shaped benzene dimer system is greatly underestimated by all dispersion models, as compared to high-level quantum calculations. The generalization of the decomposition scheme to higher order multipole polarizability interactions, representing higher order dispersion coefficients, is briefly discussed. It is argued that the incorporation of atomic C coefficients in new atomic force fields may have important ramifications in molecular dynamics studies of biomolecular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp02399eDOI Listing

Publication Analysis

Top Keywords

dispersion energy
12
decomposition scheme
12
dispersion
8
dispersion coefficients
8
benzene dimer
8
higher order
8
local decomposition
4
decomposition imaginary
4
imaginary polarizabilities
4
polarizabilities dispersion
4

Similar Publications

Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Spontaneous adsorption of iridium chloride complex on oxychloride photocatalysts provides efficient and durable reaction site for water oxidation.

Chem Commun (Camb)

January 2025

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

The visible-light-driven O evolution on oxychloride photocatalysts, such as BiNbOCl, was significantly enhanced by stirring in an aqueous solution containing IrCl in the dark. Various characterizations indicated that highly dispersed IrOHCl-like species spontaneously formed on the oxychloride surface, serving as effective and stable cocatalysts for enhancing O evolution.

View Article and Find Full Text PDF

The photochemical inheritance of Eduardo Lissi and Juan Grotewold and the intersystem crossings with other inheritances.

Photochem Photobiol

January 2025

Departamento de Química, Universidad Nacional de Rio Cuarto, Río Cuarto, Argentina.

In 1963, Eduardo Lissi and Juan Grotewold started a chemical kinetics and photochemistry group at the School of Sciences at the University of Buenos Aires (Facultad de Ciencias Exactas y Naturales, FCEN, UBA). Political circumstances in Argentina and in Chile were a great determinant of the evolution, dispersion, and re-encounters of the group members. The initial graduate students in the group developed their own research groups working in various Countries and on a variety of projects.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!