Accumulated sludge in polishing (maturation) ponds reduces the hydraulic retention time (smaller useful volume), and this could potentially lead to a decrease in performance. However, settled biomass, present in the sediments, can contribute to nitrogen removal by different mechanisms such as nitrification and denitrification. This study investigated the influence of the bottom sludge present in a shallow maturation pond treating the effluent from an anaerobic reactor on the nitrification and denitrification processes. Nitrification and denitrification rates were determined in sediment cores by applying ammonia pulses. Environmental conditions in the medium were measured and bacteria detected and quantified by real-time polymerase chain reaction (real-time PCR). The pond showed daily cycles of mixing and stratification and most of the bacteria involved in nitrogen removal decreased in concentration from the upper to the lower part of the sludge layer. The results indicate that denitrifiers, nitrifiers and anammox bacteria coexisted in the sludge, and thus different metabolic pathways were involved in ammonium removal in the system. Therefore, the sediment contributed to nitrogen removal, even with a decrease in the hydraulic retention time in the pond due to the volume occupied by the sludge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.193 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFiScience
January 2025
Department of Biological Environment, Jiyang College of Zhejiang A&F University, Zhuji, China.
Freshwater pearl farming in China generates wastewater high in ammoniacal nitrogen (NH₃-N) posing environmental threats. This study explores the use of coal fly ash (CFA), an industrial waste, to synthesize A-type zeolite for effective NH₃-N removal from pearl farming wastewater. The zeolite was prepared via pickling pretreatment and hydrothermal methods, resulting in a material with favorable adsorption properties, including cubic and spherical microstructures, a specific surface area of 17.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
Adv Biotechnol (Singap)
June 2024
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.
Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with as biocathode were compared, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!