Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547796PMC
http://dx.doi.org/10.3201/eid2308.161295DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
multilocus sequence
8
sequence typing
8
pneumocystis jirovecii
8
transmission network
8
patients
5
sequencing multilocus
4
typing analysis
4
analysis pneumocystis
4
jirovecii pneumonia
4

Similar Publications

Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.

Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.

View Article and Find Full Text PDF

Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.

View Article and Find Full Text PDF

The novel HLA-C*06:44:02 allele differs from HLA-C*06:44:01 by one synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

HLA-C*03:657 differs from HLA-C*03:04:01:02 by one nucleotide substitution in codon 82 in exon 2.

View Article and Find Full Text PDF

The Novel HLA-B*37:114 Allele Identified by Next-Generation Sequencing in a Chinese Individual.

HLA

January 2025

Department of Transfusion, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.

HLA-B*37:114 has a single non-synonymous change from HLA-B*37:01:01:01 changing residue 163 from Threonine to Lysine'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!