Infantile malignant osteopetrosis (IMO) is a rare, lethal, autosomal recessive disorder characterized by nonfunctional osteoclasts. More than 50% of the patients have mutations in the TCIRG1 gene, encoding for a subunit of the osteoclast proton pump. The aim of this study was to develop a clinically applicable lentiviral vector expressing TCIRG1 to correct osteoclast function in IMO. Two mammalian promoters were compared: elongation factor 1α short (EFS) promoter and chimeric myeloid promoter (ChimP). EFS promoter was chosen for continued experiments, as it performed better. IMO osteoclasts corrected in vitro by a TCIRG1-expressing lentiviral vector driven by EFS (EFS-T) restored Ca release to 92% and the levels of the bone degradation product CTX-I to 95% in the media compared to control osteoclasts. IMO CD34 cells from five patients transduced with EFS-T were transplanted into NSG mice. Bone marrow was harvested 9-19 weeks after transplantation, and human CD34 cells were selected, expanded, and seeded on bone slices. Vector-corrected IMO osteoclasts had completely restored Ca release. CTX-I levels in the media were 33% compared to normal osteoclasts. Thus, in summary, evidence is provided that transduction of IMO CD34+ cells with the clinically applicable EFS-T vector leads to full rescue of osteoclasts in vitro and partial rescue of osteoclasts generated from NSG mice engrafting hematopoietic cells. This supports the continued clinical development of gene therapy for IMO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2017.053 | DOI Listing |
J Cancer
January 2025
Department of Pathology and Laboratory Medicine, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
MicroRNAs (miRNAs) can function as either tumor suppressors or oncogenes. This study explores the role of miR-675 in ovarian cancer (OC) using OC cell lines and an orthotopic mouse model. We demonstrate that miR-675 expression inhibits primary tumor growth and metastasis by targeting TGFβ1, suppressing epithelial to mesenchymal transition (EMT), and attenuating the TGFβ signaling pathway.
View Article and Find Full Text PDFHum Gene Ther
December 2024
Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.
View Article and Find Full Text PDFEur J Med Chem
February 2025
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China. Electronic address:
FMS-like tyrosine receptor kinase 3 (FLT3) mutations, the most common genetic alterations found in acute myeloid leukemia (AML) patients, have been pursued as an ideal drug discovery target for the AML therapy. Taking compound 2 as lead, a series of pyridine derivatives bearing 1,2,3-triazole moiety were rationally designed and synthesized. The bioassays confirmed that these derivatives exerted potent antileukemia effects, and compound 12y was found to be the most potent one.
View Article and Find Full Text PDFCell Death Discov
December 2024
Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
The emerging role of ubiquitin-specific peptidase 21 (USP21) in stabilizing Fra-1 (FOSL1) highlights its involvement in promoting colorectal cancer (CRC) metastasis. Additionally, a reciprocal link between EGFR signaling and Fra-1 activation has been identified, mediated through matrix metalloproteinases (MMPs). However, the functional implications of the USP21-EGFR signaling axis in metastatic CRC (mCRC) are not fully understood.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
Background: Xenogeneic transplantation induces acute graft-versus-host disease (aGvHD) and subsequent vital organ damage. Herein, we aimed to examine hepatic damage associated with aGvHD using histopathology and gene expression profiles.
Methods: A xenografic GvHD model was established by engrafting human peripheral blood mononuclear cells (PBMCs) into immunodeficient NOD-scid IL2Rγnull (NSG) mice after busulfan conditioning.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!