We have used intracellular recordings to study synaptic interactions between myenteric neurons grown in dissociated cell culture. Intracellular stimulation of individual myenteric neurons caused several types of synaptic effects in nearby neurons: fast excitatory synaptic potentials mediated by nicotinic acetylcholine receptors; slow, non-cholinergic synaptic potentials; dual transmission having both fast cholinergic and slow non-cholinergic components and inhibition of spontaneously occurring fast nicotinic synaptic potentials. Fast nicotinic synaptic potentials were elicited by about 40% of neurons tested and often occurred spontaneously. The fast synaptic potentials were similar to those that have been studied in other autonomic neurons with respect to their estimated reversal potential and their sensitivity to cholinergic antagonists. The amplitudes of the fast synaptic potentials declined if evoked at frequencies greater than 0.5 Hz. Potentiation of the fast synaptic potentials was observed following high-frequency stimulation of presynaptic neurons. Several transmitter candidates modulated fast cholinergic transmission. Substance P and vasoactive intestinal peptide promoted nicotinic transmission by causing increased amplitudes of evoked and spontaneous fast synaptic potentials and an increased frequency of spontaneous synaptic potentials. gamma-Aminobutyrate and [Met]enkephalin both caused decreased amplitudes and frequency of nicotinic synaptic potentials. Serotonin depressed synaptic potentials in some neurons while enhancing them or having no effect in others. Slow, non-cholinergic, synaptic potentials were elicited by about 10% of neurons tested. These synaptic effects lasted 15-300s, caused depolarizations of 3-15 mv and were accompanied by increased neuronal input resistance. The transmitter(s) causing these slow synaptic potentials has not yet been identified.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0306-4522(85)90058-2 | DOI Listing |
Alzheimers Dement
December 2024
Ahmadu Bello University Zaria, Zaria, Kaduna, Nigeria.
Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.
View Article and Find Full Text PDFFluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutaamate release activity at presynaptic boutons in cultured rat hippocampal neurons.
View Article and Find Full Text PDFFront Synaptic Neurosci
December 2024
Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece.
β-adrenergic receptors (β-ARs) play a critical role in modulating learning, memory, emotionality, and long-term synaptic plasticity. Recent studies indicate that β-ARs are necessary for long-term potentiation (LTP) induction in the ventral hippocampus under moderate synaptic activation conditions that do not typically induce LTP. To explore potential dorsoventral differences in β-AR-mediated effects, we applied the β-AR agonist isoproterenol (10 μM, 30 min) to dorsal and ventral hippocampal slices, recording field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) from the CA1 region.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Graduate Neuroscience Program, University of California, Riverside, CA, USA.
Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!