Reorientation of cucumber seedlings induces re-localization of CsPIN1 auxin efflux carriers in endodermal cells of the transition zone between hypocotyl and roots. This study examined whether the re-localization of CsPIN1 was due to the graviresponse. Immunohistochemical analysis indicated that, when cucumber seedlings were grown entirely under microgravity conditions in space, CsPIN1 in endodermal cells was mainly localized to the cell side parallel to the minor axis of the elliptic cross-section of the transition zone. However, when cucumber seeds were germinated in microgravity for 24 h and then exposed to 1 centrifugation in a direction crosswise to the seedling axis for 2 h in space, CsPIN1 was re-localized to the bottom of endodermal cells of the transition zone. These results reveal that the localization of CsPIN1 in endodermal cells changes in response to gravity. Furthermore, our results suggest that the endodermal cell layer becomes a canal by which auxin is laterally transported from the upper to the lower flank in response to gravity. The graviresponse-regulated re-localization of CsPIN1 could be responsible for the decrease in auxin level, and thus for the suppression of peg formation, on the upper side of the transition zone in horizontally placed seedlings of cucumber.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515524 | PMC |
http://dx.doi.org/10.1038/npjmgrav.2016.30 | DOI Listing |
Curr Top Dev Biol
January 2025
University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States. Electronic address:
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function.
View Article and Find Full Text PDFOncol Res
January 2025
College of Food Sciences, Al-Qasim Green University, Babylon, Iraq.
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases.
View Article and Find Full Text PDFOpen Biol
January 2025
Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK.
Primordial germ cells (PGCs) are the founder cells that develop into mature gametes. PGCs emerge during weeks 2-3 of human embryo development. Pluripotency genes are reactivated during PGC specification, including Krüppel-like factor KLF4, but its precise role in PGC development is unclear.
View Article and Find Full Text PDFbioRxiv
January 2025
Developmental and Cell Biology, University of California, Irvine, CA, USA.
In vertebrates, germ layer specification represents a critical transition where pluripotent cells acquire lineage-specific identities. We identify the maternal transcription factors Foxi2 and Sox3 to be pivotal master regulators of ectodermal germ layer specification in . Ectopic co-expression of Foxi2 and Sox3 in prospective endodermal tissue induces the expression of ectodermal markers while suppressing mesendodermal markers.
View Article and Find Full Text PDFCell Stem Cell
January 2025
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China. Electronic address:
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!