AI Article Synopsis

  • Microalgae have potential for producing biofuels and valuable compounds, but challenges like low product yield hinder commercial production.
  • Researchers enhanced triacylglycerol (TAG) accumulation in a diatom strain by expressing a yeast acyltransferase and a plant oleosin protein.
  • The co-expression led to a 3.6-fold increase in TAG content, and more lipid droplets were observed, especially under nitrogen stress, while fatty acid composition stayed unchanged.

Article Abstract

Background: Microalgae are promising alternate and renewable sources for producing valuable products such as biofuel and essential fatty acids. Although this is the case, there are still challenges impeding on the effective commercial production of microalgal products. For instance, their product yield is still too low. Therefore, this study was oriented towards enhancing triacylglycerol (TAG) accumulation in the diatom (strain Pt4). To achieve this, a type 2 acyl-CoA:diacylglycerol acyltransferase from yeast () and the lipid droplet (LD) stabilizing oleosin protein 3 from () were expressed in Pt4.

Results: The individual expression of and in Pt4 resulted in a 2.3- and 1.4-fold increase in TAG levels, respectively, in comparison to the wild type. The co-expression of both, and , was accompanied by a 3.6-fold increase in TAG content. On the cellular level, the lines co-expressing and showed the presence of the larger and increased numbers of lipid droplets when compared to transformants expressing single genes and an empty vector. Under nitrogen stress, TAG productivity was further increased twofold in comparison to nitrogen-replete conditions. While TAG accumulation was enhanced in the analyzed transformants, the fatty acid composition remained unchanged neither in the total lipid nor in the TAG profile.

Conclusions: The co-expression of two genes was shown to be a more effective strategy for enhancing TAG accumulation in strain Pt4 than a single gene strategy. For the first time in a diatom, a LD protein from a vascular plant, oleosin, was shown to have an impact on TAG accumulation and on LD organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514505PMC
http://dx.doi.org/10.1186/s13068-017-0874-1DOI Listing

Publication Analysis

Top Keywords

tag accumulation
16
plant oleosin
8
enhancing triacylglycerol
8
tag
8
strain pt4
8
increase tag
8
accumulation
5
heterologous co-expression
4
co-expression yeast
4
yeast diacylglycerol
4

Similar Publications

Understanding the triacylglycerol-based carbon anabolic differentiation in Cyperus esculentus and Cyperus rotundus developing tubers via transcriptomic and metabolomic approaches.

BMC Plant Biol

December 2024

College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.

Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.

Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.

View Article and Find Full Text PDF

Noise exposure is one of the most common causes of sensorineural hearing loss. Although many studies considered inflammation to be a major contributor to noise-induced hearing loss, the process of cochlear inflammation is still unclear. Studies have found that activation of the NF-κB signaling pathway results in the accumulation of macrophages in the inner ear plays an important role in hair cell damage.

View Article and Find Full Text PDF

In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants.

View Article and Find Full Text PDF

Tagless LysoIP for immunoaffinity enrichment of native lysosomes from clinical samples.

J Clin Invest

December 2024

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.

Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.

View Article and Find Full Text PDF

Similar to the mammalian hepatocytes, oenocytes accumulate fat during fasting, but it is unclear how they communicate with the fat body, the major lipid source. Using a modified protocol for prolonged starvation, we show that knockdown (KD) of the sole delta 9 desaturase, Desat1 (SCD in mammals), specifically in oenocytes leads to more saturated lipids in the hemolymph and reduced triacylglycerol (TAG) storage in the fat body. Additionally, oenocytes with KD exhibited an accumulation of lipoproteins and actin filaments at the cortex, which decreased lipoproteins in the hemolymph.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!