AI Article Synopsis

  • Researchers found that nicotinic acetylcholine receptors (nAChRs) in human monocytes inhibit the release of interleukin-1β (IL-1β) through subunits α7, α9, and α10.
  • They identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as new compounds that act as nicotinic agonists, influencing signaling without affecting ion channels like traditional nAChRs do.
  • The study confirmed that lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC) also inhibit IL-1β release, mainly requiring α9 and α10 subunits, while α7 has

Article Abstract

Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496965PMC
http://dx.doi.org/10.3389/fncel.2017.00189DOI Listing

Publication Analysis

Top Keywords

α9 α10
28
α7 α9
20
subunits α7
12
atp-dependent release
12
ion channel
12
subunits α9
12
lpc g-pc
12
nachr subunits
12
subunits
9
nachr
9

Similar Publications

Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, using a single copper cofactor bound in a conserved histidine brace with a more variable second coordination sphere. Cellulose-active LPMOs in the fungal AA9 family and in a subset of bacterial AA10 enzymes contain a His-Gln-Tyr second sphere motif, whereas other cellulose-active AA10s have an Arg-Glu-Phe motif. To shine a light on the impact of this variation, we generated single, double, and triple mutations changing the His-Gln-Tyr motif in cellulose- and chitin-oxidizing AA10B toward Arg-Glu-Phe.

View Article and Find Full Text PDF

Structure-Activity Relationship and Voltage Dependence for the Drug-Drug Interaction between Amiodarone Analogs and MNI-1 at the L-type Cav Channel.

J Pharmacol Exp Ther

April 2024

Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania.

The drug-drug interaction (DDI) between amiodarone (AMIO) and sofosbuvir (SOF), a direct-acting hepatitis-C NS5B nucleotide polymerase inhibitor, has been associated with severe bradyarrhythmia in patients. Recent cryo-EM data has revealed that this DDI occurs at the -subunit of L-type Cav channels, with AMIO binding at the fenestration site and SOF [or MSD nucleotide inhibitor #1 (MNI-1): analog of SOF] binding at the central cavity of the conductance pathway. In this study, we investigated the DDI between 21 AMIO analogs, including dronedarone (DRON) and MNI-1 (or SOF) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hCav1.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are one of the emerging classes of copper metalloenzymes that have received considerable attention due to their ability to boost the enzymatic conversion of intractable polysaccharides such as plant cell walls and chitin polymers. LPMOs catalyze the oxidative cleavage of β-1,4-glycosidic bonds using molecular O or HO in the presence of an external electron donor. LPMOs have been classified as an auxiliary active (AA) class of enzymes and, further based on substrate specificity, divided into eight families.

View Article and Find Full Text PDF

Background: Lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative cleavage of different types of polysaccharides have potential to be used in various industries. However, AA13 family LPMOs which specifically catalyze starch substrates have relatively less members than AA9 and AA10 families to limit their application range. Amylase has been used in enzymatic desizing treatment of cotton fabric for semicentury which urgently need for new assistant enzymes to improve reaction efficiency and reduce cost so as to promote their application in the textile industry.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the HO cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!