AI Article Synopsis

  • The study focused on creating and testing poly(ε-caprolactone) nanocapsules filled with neem oil, which remained stable for 120 days and had an average size of around 400 nm.
  • Toxicity tests revealed that adding oleic acid increased the toxicity of the formulations, while the neem oil alone demonstrated effectiveness without harming soil microbiota over a 300-day period.
  • Ultimately, the findings suggested that using only neem oil in the nanocapsules is more environmentally friendly and less toxic compared to combinations with oleic acid, highlighting the importance of assessing nanopesticide toxicity for sustainable agricultural practices.

Article Abstract

In this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.2 and were stable for 120 days. Cytotoxicity and genotoxicity results showed an increase in toxicity of the oleic acid + neem formulations according to the amount of oleic acid used. The minimum inhibitory concentrations demonstrated that all the formulations containing neem oil were active. The nanocapsules containing neem oil did not affect the soil microbiota during 300 days of exposure compared to the control. Phytotoxicity studies indicated that NC_20 (200 mg of neem oil) did not affect the net photosynthesis and stomatal conductance of maize plants, whereas use of NC_10 (100:100 of neem:oleic acid) and NC_15 (150:50 of neem:oleic acid) led to negative effects on these physiological parameters. Hence, the use of oleic acid as a complement in the nanocapsules was not a good strategy, since the nanocapsules that only contained neem oil showed lower toxicity. These results demonstrate that evaluation of the toxicity of nanopesticides is essential for the development of environmentally friendly formulations intended for applications in agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517525PMC
http://dx.doi.org/10.1038/s41598-017-06092-4DOI Listing

Publication Analysis

Top Keywords

neem oil
20
nanocapsules neem
8
oleic acid
8
oil affect
8
neemoleic acid
8
nanocapsules
6
oil
6
toxicity
5
neem
5
neem azadirachta
4

Similar Publications

Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.

View Article and Find Full Text PDF

Hybrid in-situ and ex-situ hydrolysis of catalytic epoxidation neem oil via a peracid mechanism.

Sci Rep

January 2025

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, Masai Johor, 81750, Malaysia.

The depletion of oil reserves and their price and availability volatility raise researchers' concerns about renewable resources for epoxidized material. This study aims to produce in situ and ex-situ hydrolyzed dihydroxy stearic acid via the epoxidation of neem oil. Epoxidized neem oil was synthesized using in situ-generated performic acid.

View Article and Find Full Text PDF

This study aimed to determine the chemical composition of ginger Zingiber officinale Roscoe (Zingiberaceae) and soursop Annona muricata Linn (Annonaceae) oils, formulate stable emulsions of these oils separately, as well as neem oil Azadirachta indica A. Juss (Meliaceae), and evaluate the insecticidal activity of these emulsions against Duponchelia fovealis Zeller, 1847 (Lepidoptera: Crambidae). Each stable emulsion contained an oil phase containing ginger, soursop, or neem oil, a fruit polyalcohol-based emulsifier, ethanol, or water.

View Article and Find Full Text PDF

In an attempt to develop natural product-based anticancer agents, a series of novel epoxyazadiradione-thiazole hybrids () were synthesised and evaluated for their anticancer activity. All the synthesised derivatives were assessed for cytotoxic activity against a panel of human cancer and normal cell lines and the results showed that most of the compounds exhibited significant cytotoxic activity against cancer cells and as well some of the compounds showed less cytotoxicity against normal cells. In particular, compound showed potent cytotoxic activity against tongue cancer cell lines.

View Article and Find Full Text PDF

Cannabinoid hyperemesis syndrome: genetic susceptibility to toxic exposure.

Front Toxicol

October 2024

CReDO Science, Austin, TX, United States.

Cannabinoid hyperemesis syndrome presents as a complex of symptoms and signs encompassing nausea, vomiting, abdominal pain, and hot water bathing behavior, most typically in a heavy cannabis user. Its presentation is frequently associated with hypothalamic-pituitary-adrenal axis activation with stress and weight loss. Recent investigation has identified five statistically significant mutations in patients distinct from those of frequent cannabis users who lack the symptoms, affecting the TRPV1 receptor, two dopamine genes, the cytochrome P450 2C9 enzyme that metabolizes tetrahydrocannabinol, and the adenosine triphosphate-binding cassette transporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!