Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.

Hear Res

Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute (KHRI), University of Michigan, 1100 W Medical Center Drive, Ann Arbor, MI 48109, United States. Electronic address:

Published: December 2017

AI Article Synopsis

  • Bimodal stimulation of the spinal trigeminal nucleus and tone frequencies was shown to modulate both neural responses and spontaneous firing rates in the primary auditory cortex (A1) of guinea pigs, indicating potential treatment effects for tinnitus.
  • Long-term effects (up to 2 hours) of the bimodal stimulation were observed, with different pairing intervals resulting in varying degrees of neural enhancement or suppression, influenced by prior noise exposure.
  • The study found that noise-damaged brains exhibited altered neural synchrony and processing of sound information, which was further affected by the bimodal stimulation, suggesting potential therapeutic implications for auditory processing in noise-exposed individuals.

Article Abstract

We previously demonstrated that bimodal stimulation (spinal trigeminal nucleus [Sp5] paired with best frequency tone) altered neural tone-evoked and spontaneous firing rates (SFRs) in primary auditory cortex (A1) 15 min after pairing in guinea pigs with and without noise-induced tinnitus. Neural responses were enhanced (+10 ms) or suppressed (0 ms) based on the bimodal pairing interval. Here we investigated whether bimodal stimulation leads to long-term (up to 2 h) changes in tone-evoked and SFRs and neural synchrony (correlate of tinnitus) and if the long-term bimodal effects are altered following noise exposure. To obviate the effects of permanent hearing loss on the results, firing rates and neural synchrony were measured three weeks following unilateral (left ear) noise exposure and a temporary threshold shift. Simultaneous extra-cellular single-unit recordings were made from contralateral (to noise) A1 and dorsal rostral belt (RB); an associative auditory cortical region thought to influence A1, before and after bimodal stimulation (pairing intervals of 0 ms; simultaneous Sp5-tone and +10 ms; Sp5 precedes tone). Sixty and 120 min after 0 ms pairing tone-evoked and SFRs were suppressed in sham A1; an effect only preserved 120 min following pairing in noise. Stimulation at +10 ms only affected SFRs 120 min after pairing in sham and noise-exposed A1. Within sham RB, pairing at 0 and +10 ms persistently suppressed tone-evoked and SFRs, while 0 ms pairing in noise markedly enhanced tone-evoked and SFRs up to 2 h. Together, these findings suggest that bimodal stimulation has long-lasting effects in A1 that also extend to the associative RB that is altered by noise and may have persistent implications for how noise damaged brains process multi-sensory information. Moreover, prior to bimodal stimulation, noise damage increased neural synchrony in A1, RB and between A1 and RB neurons. Bimodal stimulation led to persistent changes in neural synchrony in intact A1 and RB that were also altered by noise-exposure. Given that increases in neural synchrony following noise may be consistent with tinnitus onset, these data implicate that both A1 and RB may be involved in the etiology of phantom sound perception. These data also suggest that noise alters the effects of bimodal stimulation on neural synchrony in A1 and RB; an effect that may also lead to changes in tinnitus perception.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2017.07.004DOI Listing

Publication Analysis

Top Keywords

bimodal stimulation
32
neural synchrony
24
tone-evoked sfrs
16
noise exposure
12
firing rates
12
noise
11
bimodal
10
neural
9
stimulation
9
primary auditory
8

Similar Publications

Purpose: The aim of this study was to measure the effects of frequency spacing (i.e., F2 minus F1) on spectral integration for vowel perception in simulated bilateral electric-acoustic stimulation (BiEAS), electric-acoustic stimulation (EAS), and bimodal hearing.

View Article and Find Full Text PDF

Purpose: Triple-negative breast cancer (TNBC) accounts for 20% of all breast cancer cases and is notably resistant to radiotherapy (RT). Photodynamic therapy (PDT) using porphyrins or their derivatives has shown promise as a potential cancer treatment and immune activator. This study evaluated the effects of combining PDT and RT in sublethal conditions for TNBC using in vitro and in vivo models.

View Article and Find Full Text PDF

Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern.

Cerebellum

January 2025

Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.

Article Synopsis
  • ctACS may offer a non-invasive treatment avenue for psychiatric and neurological disorders, but its effectiveness is limited by a lack of understanding of its impact on cerebellar activity at cellular levels.
  • Previous research indicated that AC stimulation influenced Purkinje cell (PC) and cerebellar nuclear (CN) cell activity in a frequency-dependent manner when applied to the cerebellum.
  • This study found that ctACS altered PC and CN activity in rats, revealing that the modulation patterns varied with stimulus frequency and electrode placement, indicating potential for targeted treatment strategies.
View Article and Find Full Text PDF

Comparing auditory and visual aspects of multisensory working memory using bimodally matched feature patterns.

Exp Brain Res

December 2024

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, CNY 149, 13th St, Charlestown, MA, 02129, USA.

Working memory (WM) reflects the transient maintenance of information in the absence of external input, which can be attained via multiple senses separately or simultaneously. Pertaining to WM, the prevailing literature suggests the dominance of vision over other sensory systems. However, this imbalance may be stemming from challenges in finding comparable stimuli across modalities.

View Article and Find Full Text PDF

Background: Cochlear implants (CIs) have the potential to facilitate auditory restoration in deaf children and contribute to the maturation of the auditory cortex. The type of CI may impact hearing rehabilitation in children with CI. We aimed to study central auditory processing activation patterns during speech perception in Mandarin-speaking pediatric CI recipients with different device characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!