The recycling of biosolids and livestock manure in agriculture may lead to the introduction of antibiotic residues, i.e., parent molecule and transformation products, into amended soils. Their fate in soils can be approached through the assessment of their environmental availability. In this work, the environmental availability of sulfamethoxazole (SMX) and three transformation products (N-acetyl-SMX, 3-amino-5-methylisoxazole, aniline) was assessed in soils amended with sludge compost or cow manure throughout a three-month incubation, using soft extractions with CaCl, EDTA or cyclodextrin solutions. First, the freeze-storage of soil samples was shown to decrease the SMX extractability. The SMX extractability depended on the initial concentration, the amendment type and the extracting solution at day 0. From 1.9% up to 63% of the SMX total content was initially extractable. The lowest fractions were quantified in EDTA extracts in which the dissolved organic matter was the most complex and responsible for high matrix effects in mass spectrometry compared to CaCl extracts. The purification of cyclodextrin extracts highly reduced the matrix effects, but CaCl was considered as the most suitable extractant. SMX extractability strongly decreased after the first 8days of incubation to finally reach 0.4-0.8% after 84days, whatever the initial conditions. This high decrease could be related to humification observed through the increasing complexity of extracted dissolved organic matter. Very low levels of transformation products were quantified throughout the incubation period. The low environmental availability of SMX was mainly due to its sorption on soil organic matter and resulted in its low biotransformation in these amended soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.06.192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!