Local Equilibrium and Retardation Revisited.

Ground Water

Computational Earth Science Group, Los Alamos National Laboratory, Los Alamos, NM, 87545.

Published: January 2018

AI Article Synopsis

Article Abstract

In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.12566DOI Listing

Publication Analysis

Top Keywords

local equilibrium
24
retarded ade
24
mass transfer
12
ade
7
local
6
retarded
6
equilibrium
5
equilibrium retardation
4
retardation revisited
4
revisited modeling
4

Similar Publications

Chimera states in a system of stationary and flying-through deterministic particles with an internal degree of freedom.

Chaos

January 2025

Department of Control Theory, Scientific and Educational Mathematical Center "Mathematics of Future Technologies", Nizhny Novgorod State University, Gagarin Av. 23, Nizhny Novgorod 603022, Russia.

We consider the effect of the emergence of chimera states in a system of coexisting stationary and flying-through in potential particles with an internal degree of freedom determined by the phase. All particles tend to an equilibrium state with a small number of potential wells, which leads to the emergence of a stationary chimera. An increase in the number of potential wells leads to the emergence of particles flying-through along the medium, the phases of which form a moving chimera.

View Article and Find Full Text PDF

Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.

View Article and Find Full Text PDF

Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis.

Math Biosci Eng

December 2024

Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, D-06217 Merseburg, Germany.

In this article, we reconsider the classical target cell limited dynamical within-host HIV model, solely taking into account the interaction between $ {\rm{CD}}4^{+} $ T cells and virus particles. First, we summarize some analytical results regarding the corresponding dynamical system. For that purpose, we proved some analytical results regarding the system of differential equations as our first main contribution.

View Article and Find Full Text PDF

We derive the compact closed forms of local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) for hybrid qubit-qutrit axially symmetric (AS) states. This allows us to study the quantum correlations in detail and present some essentially novel results for spin-(1/2, 1) systems, the Hamiltonian of which contains ten independent types of physically important parameters. As an application of the derived formulas, we study the behavior of these two quantum correlation measures at thermal equilibrium.

View Article and Find Full Text PDF

Virtually all mRNAs acquire a poly(A) tail co-transcriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create post-transcriptional gene expression programs, allowing for precise temporal and spatial control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!