Transdermal protein delivery is a powerful and attractive method for protein therapy and dermal vaccination compared with other administrations. However, this delivery method is restricted by the low permeability of the stratum corneum (SC), a hydrophobic barrier that restricts the entry of hydrophilic molecules such as proteins. In this study, we developed an improved gel patch system carrying ovalbumin and ovalbumin epitope peptide, and then compared their permeability into the skin. First, the gel patch was placed on mouse skin to allow contact with the polymer coated gold nanorods and then irradiated by a continuous-wave laser. Thermal ablation of the SC improved the permeability and translocation of ovalbumin and the peptide. Fluorescence images showed the translocation was enhanced when the skin was treated with the FITC-modified ovalbumin epitope peptide. However, induction of anti-OVA IgG production after treatment with the FITC-modified ovalbumin epitope peptide was lower than that with FITC-OVA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2017.1357876 | DOI Listing |
Front Immunol
December 2024
Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
Exposure to allogenic red blood cells (RBCs), either through pregnancy or transfusion, can result in alloimmunization, which can lead to severe hemolytic transfusion reactions and pregnancy complications. Passively administered antibodies can be used to prevent alloimmunization, where steric hindrance of allogeneic epitopes has been postulated as one mechanism whereby antibody engagement may prevent RBC alloimmunization. However, the dynamics of antibody engagement on the RBC surface has remained difficult to study.
View Article and Find Full Text PDFBiomaterials
May 2025
Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China; Quzhou Fudan Institute, Quzhou, Zhejiang Province, 324000, China. Electronic address:
Cancer vaccines show promise by eliciting tumor-specific cytotoxic T lymphocytes (CTL) responses. Efficient cytosolic co-delivery of antigens and adjuvants to dendritic cells (DCs) is crucial for vaccines to induce anti-tumor immunity. However, peptide- or nucleic acid-based biomolecules like tumor antigens and STING agonist cyclic-di-GMP (cdGMP) are prone to endosomal degradation, resulting in low cytosolic delivery and CTL response rates.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
The development of cancer vaccines is at the forefront of cancer immunotherapy. Most existing strategies to induce an efficient anti-tumor immune response rely on molecular adjuvants and the incorporation of complex synthetic vectors into vaccine formulations. In contrast, this study introduces a one-step engineering technique to assemble the model antigen, Ovalbumin (OVA), into amyloid aggregates, leveraging biomimetic folding and aggregation to create non-fibrillar OVA globular aggregates and OVA amyloid-like fibrils as single-component, adjuvant-free vaccines.
View Article and Find Full Text PDFFood Chem
February 2025
College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; Changsha Innovation Institute for Food, Changsha 410128, China. Electronic address:
The effect of cold plasma (CP) treatment in promoting the covalent grafting of ovalbumin (OVA) with gallic acid (GA) were investigated, along with identifying the binding sites in the OVA-GA complex and exploring its potential for reducing the antigenicity of OVA. The results showed that the GA content of 22.97 ± 1.
View Article and Find Full Text PDFMolecules
September 2024
Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland.
The byproduct from wheat starch production contains approximately 70% gluten (WG) and is an inexpensive but demanding protein raw material for the food industry. This study attempted to determine the optimal hydrolysis conditions for such raw material to obtain peptides combining beneficial functional characteristics with health-promoting activity. The proteases Bromelain, Alcalase, Flavourzyme, and a protease from were used for hydrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!