Objectives: We sought to determine the prevalence, predictors, and clinical impact of target lesion calcification in patients undergoing percutaneous coronary intervention (PCI) with newer generation drug-eluting stents (DES) and devices.

Background: Coronary calcification is independently associated with adverse outcomes following PCI. While newer DES and contemporary devices are considered safer and more efficacious, their influence on outcomes following PCI of heavily calcified lesions is unknown.

Methods: We performed a retrospective analysis of a large, multiethnic cohort of patients undergoing PCI with new generation DES at an academic center between 2009 and 2013. Coronary calcification was qualitatively assessed as none/mild, moderate, or severe. Independent demographic, clinical, and anatomic predictors of moderate/severe calcification were identified using logistic regression. Associations between coronary calcification and 1-year MACE (death, myocardial infarction, or target vessel revascularization) were examined using Cox modeling.

Results: Compared to patients with none/mild (n = 10,180; 82.0%), those with moderate (n = 1,271; 10.0%) or severe (n = 994; 8.0%) calcification were older, more often Caucasian, had more complex target lesions, and worse renal function. The strongest demographic, clinical, and anatomic correlates of moderate/severe calcification were age, Caucasian race, renal dysfunction, lesion length, and left main location. Unadjusted MACE rates among those with none/mild, moderate, and severe calcification were 8.3, 14.6, and 17.8%, respectively (P < 0.001). After multivariable adjustment, the hazard ratio (95% CI) for MACE associated with moderate or severe coronary calcification was 1.63.

Conclusions: Target lesion calcification remains independently associated with adverse outcomes in patients treated with newer generation DES and modern devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ccd.27204DOI Listing

Publication Analysis

Top Keywords

coronary calcification
16
calcification
9
large multiethnic
8
patients undergoing
8
pci newer
8
outcomes pci
8
none/mild moderate
8
moderate severe
8
demographic clinical
8
clinical anatomic
8

Similar Publications

Limited data exist on cancer screening in carceral facilities. This study evaluates the feasibility and outcomes of a population-based lung cancer screening initiative in a carceral setting. This is a retrospective review of a lung cancer screening event at the Rhode Island Department of Corrections.

View Article and Find Full Text PDF

Vertebral fracture assessment (VFA) images from bone density machines enable the automated machine learning assessment of abdominal aortic calcification (ML-AAC), a marker of cardiovascular disease (CVD) risk. The objective of this study was to describe the risk of a major adverse cardiovascular event (MACE, from linked health records) in patients attending routine bone mineral density (BMD) testing and meeting specific criteria based on age, BMD, height loss, or glucocorticoid use have a VFA in the Manitoba Bone Mineral Density Registry. The cohort included 10 250 individuals (mean 75.

View Article and Find Full Text PDF

Introduction: Calcific aortic valve disease (CAVD) is increasingly prevalent among the aging population, and there is a notable lack of drug therapies. Consequently, identifying novel drug targets will be of utmost importance. Given that type 2 diabetes is an important risk factor for CAVD, we identified key genes associated with diabetes - related CAVD via various bioinformatics methods, which provide further potential molecular targets for CAVD with diabetes.

View Article and Find Full Text PDF

Background: Mitral annular calcification (MAC) is characterized by severe calcification of mitral annulus and might be associated with both mitral regurgitation and stenosis. It is technically challenging for both surgical and percutaneous approach and is burdened by high mortality.

Case Summary: The present case report describes a complex case of mitral steno-insufficiency (baseline transvalvular gradient = 5 mmHg, effective regurgitant orifice area 0.

View Article and Find Full Text PDF

Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!