CDK9: A key player in cancer and other diseases.

J Cell Biochem

Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.

Published: February 2018

Cyclin-Dependent Kinase 9 (CDK9) is part of a functional diverse group of enzymes responsible for cell cycle control and progression. It associates mainly with Cyclin T1 and forms the Positive Transcription Elongation Factor b (p-TEFb) complex responsible for regulation of transcription elongation and mRNA maturation. Recent studies have highlighted the importance of CDK9 in many relevant pathologic processes, like cancer, cardiovascular diseases, and viral replication. Herein we provide an overview of the different pathways in which CDK9 is directly and indirectly involved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.26293DOI Listing

Publication Analysis

Top Keywords

transcription elongation
8
cdk9
4
cdk9 key
4
key player
4
player cancer
4
cancer diseases
4
diseases cyclin-dependent
4
cyclin-dependent kinase
4
kinase cdk9
4
cdk9 functional
4

Similar Publications

NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit.

Nat Commun

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.

Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes.

View Article and Find Full Text PDF

LEDGF/p75 promotes transcriptional pausing through preventing SPT5 phosphorylation.

Sci Adv

January 2025

Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.

SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation.

Cell Rep

January 2025

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China. Electronic address:

Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages.

View Article and Find Full Text PDF

Maternal ELL3 loss-of-function leads to oocyte aneuploidy and early miscarriage.

Nat Struct Mol Biol

January 2025

Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.

Up to an estimated 10% of women experience miscarriage in their lifetimes. Embryonic aneuploidy is a leading cause for miscarriage, infertility and congenital defects. Here we identify variants of ELL3, a gene encoding a transcription elongation factor, in couples who experienced consecutive early miscarriages due to embryonic aneuploidy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!