Agnoprotein (Agno) is an important regulatory protein of JC virus (JCV), BK virus (BKV) and simian virus 40 (SV40) and these viruses are unable to replicate efficiently in the absence of this protein. Recent 3D-NMR structural data revealed that Agno contains two alpha-helices (a minor and a major) while the rest of the protein adopts an unstructured conformation (Coric et al., 2017, J Cell Biochem). Previously, release of the JCV Agno from the Agno-positive cells was reported. Here, we have further mapped the regions of Agno responsible for its release by a structure-based systematic mutagenesis approach. Results revealed that amino acid residues (Lys22, Lys23, Phe31, Glu34, and Asp38) located either on or adjacent to the hydrophilic surface of the major alpha-helix domain of Agno play critical roles in release. Additionally, Agno was shown to strongly interact with unidentified components of the cell surface when cells are treated with Agno, suggesting additional novel roles for Agno during the viral infection cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705473 | PMC |
http://dx.doi.org/10.1002/jcp.26106 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States.
Hydrogen bubble adhesion to the electrode presents a major obstacle for green hydrogen generation via the hydrogen evolution reaction (HER) as it would induce undesired overpotential and undermine the reaction efficiency by reducing reaction area, increasing transport resistance, and creating an undesired ion concentration gradient. While electrodes with aerophobic/hydrophilic surfaces have been developed to facilitate bubble detachment, they primarily rely on micro- and nanostructured catalyst surfaces to enhance buoyance-induced bubble departure. Here, we demonstrate that introducing nonreactive yet more hydrophilic surfaces can promote coalescence-induced bubble departure, thereby significantly reducing the transport overpotential and improving HER performance.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia. Electronic address:
Dry eye disease is a multifactorial condition characterized by a loss of homeostasis of the tear film. Among the various treatment approaches, the application of ophthalmic oil-in-water nanoemulsions with incorporated anti-inflammatory drugs represents one of the most advanced approaches. However, the liquid nature of nanoemulsions limits their retention time at the ocular surface.
View Article and Find Full Text PDFInt J Pharm
January 2025
Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
In this study, we developed zwitterionic surface coatings of carboxybetaine by mimicking natural melanogenesis. We synthesized an unnatural tyrosine-conjugated carboxybetaine (Tyr-CB) that undergoes melanin-like oxidation upon treatment with tyrosinase under various aqueous conditions. The thickness of the resulting poly(Tyr-CB) film was tuned by adjusting the pH during the coating process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!