Objectives: In this study, we investigate in human cervical epithelial HeLa cells the intracellular dynamics and the mutual interaction with the organelles of the poly-l-lactic acid nanoparticles (PLLA NPs) carrying the naturally occurring hydrophobic photosensitizer hypericin.

Methods: Temporal and spatiotemporal image correlation spectroscopy was used for the assessment of the intracellular diffusion and directed motion of the nanocarriers by tracking the hypericin fluorescence. Using image cross-correlation spectroscopy and specific fluorescent labelling of endosomes, lysosomes and mitochondria, the NPs dynamics in association with the cell organelles was studied. Static colocalization experiments were interpreted according to the Manders' overlap coefficient.

Key Findings: Nanoparticles associate with a small fraction of the whole-organelle population. The organelles moving with NPs exhibit higher directed motion compared to those moving without them. The rate of the directed motion drops substantially after the application of nocodazole. The random component of the organelle motions is not influenced by the NPs.

Conclusions: Image correlation and cross-correlation spectroscopy are most appropriate to unravel the motion of the PLLA nanocarrier and to demonstrate that the rate of the directed motion of organelles is influenced by their interaction with the nanocarriers. Not all PLLA-hypericin NPs are associated with organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.12779DOI Listing

Publication Analysis

Top Keywords

directed motion
16
poly-l-lactic acid
8
acid nanoparticles
8
cell organelles
8
image correlation
8
cross-correlation spectroscopy
8
rate directed
8
motion
6
organelles
6
investigating poly-l-lactic
4

Similar Publications

OpenCap, a smartphone-based markerless system, offers a cost-effective alternative to traditional marker-based systems for gait analysis. However, its kinematic measurement accuracy must be evaluated before widespread use in clinical practice. This study aimed to evaluate OpenCap for lower-limb joint angle measurements during walking in patients with knee osteoarthritis (OA) and to compare error metrics between patients and healthy controls.

View Article and Find Full Text PDF

Time Code for multifunctional 3D printhead controls.

Nat Commun

January 2025

Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.

Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by a slow, short-stepping, shuffling gait pattern caused by a combination of motor control limitations due to a reduction in dopaminergic neurons. Gait disorders are indicators of global health, cognitive status, and risk of falls and increase with disease progression. Therefore, the use of quantitative information on the gait mechanisms of PD patients is a promising approach, particularly for monitoring gait disorders and potentially informing therapeutic interventions, though it is not yet a well-established tool for early diagnosis or direct assessment of disease progression.

View Article and Find Full Text PDF

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Description and Analysis of Horse Swimming Strategies in a U-Shaped Pool.

Animals (Basel)

January 2025

Laboratoire de BioMécanique et BioIngénierie (UMR CNRS 7338), Centre of Excellence for Human and Animal Movement Biomechanics (CoEMoB), Université de Technologie de Compiègne (UTC), Alliance Sorbonne Université, 60200 Compiègne, France.

Aquatic training has been integrated into equine rehabilitation and training programs for several decades. While the cardiovascular effects of this training have been explored in previous studies, limited research exists on the locomotor patterns exhibited during the swimming cycle. This study aimed to analyze three distinct swimming strategies, identified by veterinarians, based on the propulsion phases of each limb: (S1) two-beat cycle with lateral overlap, (S2) two-beat cycle with diagonal overlap, and (S3) four-beat cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!