Antimicrobial Activity of Selected Polyphenols and Capsaicinoids Identified in Pepper (Capsicum annuum L.) and Their Possible Mode of Interaction.

Curr Microbiol

Laboratory of Beneficial Microorganisms, Functional Food and Health (LMBAFS), Faculty of Natural Sciences and Life, University of Abdelhamid Ibn Badis, 27000, Mostaganem, Algeria.

Published: November 2017

Antimicrobial activity of pepper polyphenols and capsaicinoids (Coumarin, caffeic acid, narangin, kaempferol, rutin, quercetin, capsaicin, and dihydrocapsaicin) against 13 pathogen bacteria and three beneficial strains was studied using the disk diffusion and microdilution methods. In general, phenolic compounds had the most important activity with the highest inhibition zones obtained with caffeic acid (3.5-20.5 mm), quercetin (4.75-3.5 mm), and kaempferol (7-14 mm). In the determination of the minimal inhibitory concentrations, the effects of both quercetin and kaempferol were more important than caffeic acid. The clinical strains Staphylococcus aureus (319, 14, 8, 32, and 550) were more sensitive to quercetin (0.00195-0.0078 mg L) whereas kaempferol was more active against the strains S. aureus (ATCC 6538, 26), S. typhimurium ATCC 13311, and Pseudomonas aeruginosa ATCC 27853 (0.0156-0.125 mg L). The interaction between these three polyphenols was studied against S. aureus ATCC 6538 and P. aeruginosa ATCC 27853. Different modes of interaction were observed (synergism, additive, and indifferent), but no antagonism was obtained. The best combination was quercetin and caffeic acid for S. aureus with fractional inhibitory concentration index (FICI) of 0.37, and kaempferol with quercetin for P. aeruginosa (FICI = 0.31).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-017-1310-2DOI Listing

Publication Analysis

Top Keywords

caffeic acid
16
antimicrobial activity
8
polyphenols capsaicinoids
8
aureus atcc
8
atcc 6538
8
aeruginosa atcc
8
atcc 27853
8
quercetin
6
kaempferol
5
atcc
5

Similar Publications

Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A and the germination inhibitor chlorpropham.

View Article and Find Full Text PDF

Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties.

Curr Res Food Sci

January 2025

School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.

The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).

View Article and Find Full Text PDF

Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.

Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.

View Article and Find Full Text PDF

(L.) Jacq. has anti-inflammatory, analgesic, haemostatic and antioxidant effects, but its pharmacological components are still unclear.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!