Introduction: Neural tube defects (NTDs) are a group of common and severe congenital birth defects that occur during early embryonic development due to incomplete closure of the neural tube. The genetic architecture of human NTDs, including spina bifida and hydrocephalus, is highly heterogeneous, with multiple genes/loci and both gene-gene and gene-environment interactions involved. Hence, the variation in outcomes also most likely relates to a combination of the severity of different variants in multiple genes and genetic modifiers affecting the biochemical traits.

Methods: Here, we present a multiple-spouse family with one pedigree lineage where three brothers are affected with NTDs-two lumbar spina bifidas without hydrocephalus and one obstructive hydrocephalus. We sequenced the exomes of three NTD patients and their parents.

Results: The analysis revealed a heterozygous c.844ins68 variant in CBS, which was carried by all affected individuals and inherited from their mother. All affected individuals had a variable set of additional low frequency deleterious variants in PTK7, PLCD4, IL4I1 or RASSF4 as likely causal loci contributing to the disease development.

Conclusion: This report extends the current knowledge of the genetic background of NTDs and proposes that common and low frequency variants in genes involved mostly in one-carbon metabolism or planar cell polarity (PCP) pathways can act in an additive manner to increase the genetic risk of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00381-017-3491-1DOI Listing

Publication Analysis

Top Keywords

neural tube
12
low frequency
8
exome analysis
4
analysis estonian
4
estonian multiplex
4
multiplex family
4
family neural
4
tube defects-a
4
defects-a case
4
case report
4

Similar Publications

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Intraoperative neurophysiological monitoring (IONM) has achieved popularity because it facilitates monitoring of the functional integrity of neural structures under general anesthesia. It aids in the early detection of injury and minimizes postoperative neurologic deficit or neurologic morbidity from surgical manipulations of various neurologic structures. The patient mentioned in this case report presented with lower limb radiculopathy and was diagnosed with diastematomyelia Type II, and she was planned for surgical intervention under general anesthesia.

View Article and Find Full Text PDF

Moderate levels of folic acid benefit outcomes for cilia based neural tube defects.

Dev Biol

January 2025

Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO 80309. Electronic address:

Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models.

View Article and Find Full Text PDF

Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!