Background: Selective clinical trial publication and outcome reporting has the potential to bias the medical literature. The 2007 Food and Drug Administration (FDA) Amendment Act (FDAAA) mandated clinical trial registration and outcome reporting on ClinicalTrials.gov, a publicly accessible trial registry.
Methods: Using publicly available data from ClinicalTrials.gov, FDA documents, and PubMed, we determined registration, publication, and reporting of findings for all efficacy trials supporting FDA approval of new drugs for cardiovascular disease and diabetes between 2005 and 2014, before and after the FDAAA. For published trials, we compared the published interpretation of the findings (positive, equivocal, or negative) with the FDA reviewer's interpretation.
Results: Between 2005 and 2014, the FDA approved 30 drugs for 32 indications of cardiovascular disease (n = 17) and diabetes (n = 15) on the basis of 183 trials (median per indication 5.7 (IQR, 3-8)). Compared with pre FDAAA, post-FDAAA studies were more likely to be registered (78 of 78 (100%) vs 73 of 105 (70%); p < 0.001), to be published (76 of 78 (97%) vs 93 of 105 (89%); p = 0.03), and to present findings concordant with the FDA reviewer's interpretation (74 of 76 (97%) vs 78 of 93 (84%); p = 0.004). Pre FDAAA, the FDA reviewer interpreted 80 (76%) trials as positive and 91 (98%) were published as positive. Post FDAAA, the FDA reviewer interpreted 71 (91%) trials as positive and 71 (93%) were published as positive.
Conclusions: FDAAA was associated with increased registration, publication, and FDA-concordant outcome reporting for trials supporting FDA approval of new drugs for cardiovascular disease and diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516301 | PMC |
http://dx.doi.org/10.1186/s13063-017-2068-3 | DOI Listing |
Background: CT1812 is an experimental therapeutic sigma-2 receptor modulator in development for Alzheimer's disease (AD) and dementia with Lewy bodies. CT1812 reduces the affinity of Aβ oligomers to bind to neurons and exert synaptotoxic effects. This phase 2, multi-center, international, randomized, double-blind, placebo-controlled trial assessed safety, tolerability and effects of CT1812 on cognitive function in individuals with AD.
View Article and Find Full Text PDFBackground: Clinical trial sponsors rely on research sites to identify and enroll appropriate study participants and to correctly and reliably assess symptom severity and function over the course of the trial. Low-recruiting sites represent a large financial and operational burden and may negatively impact trial success either by selecting inappropriate participants and/or high prevalence of data quality issues. We previously reported that >60% of sites in schizophrenia clinical trials recruited ≤5 participants.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFBackground: We have previously reported the neuroprotective effects of fosgonimeton in amyloid-β (Aβ)-driven preclinical models of Alzheimer's disease (AD). Fosgonimeton is an investigational small-molecule positive modulator of the neurotrophic hepatocyte growth factor (HGF) system, currently under investigation for mild-to-moderate AD (LIFT-AD; NCT04488419). Given the recent approvals of Aβ-targeting monoclonal antibodies (Aβ-mAbs) for the treatment of AD, and growing recognition that combination therapies may improve treatment outcomes, we sought to investigate the preclinical activity of fosgonimeton in the presence of Aβ-mAbs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!