The identification and discrimination of diols is of fundamental importance in medical diagnostics, such as measuring the contents of glucose in the urine of diabetes patients. Diol sensors are often based on fluorophore-appended boronic acids, but these severely lack discriminatory power and their response is one-dimensional. As an alternative strategy, we present the use of fluorinated boronic acid-appended pyridinium salts in combination with F NMR spectroscopy. A pool of 59 (bio)analytes was screened, containing monosaccharides, phosphorylated and N-acetylated sugars, polyols, carboxylic acids, nucleotides, and amines. The majority of analytes could be clearly detected and discriminated. In addition, glucose and fructose could be distinguished up to 1:9 molar ratio in mixtures. Crucially, the receptors feature high sensitivity and selectivity and are water-soluble, and their F-NMR analyte fingerprint is pH-robust, thereby making them particularly well-suited for medical application. Finally, to demonstrate this applicability, glucose could be detected in synthetic urine samples down to 1 mM using merely a 188 MHz NMR spectrometer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b01167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!