Lung surfactant proteins (SPs) play critical roles in surfactant function and innate immunity. SP-A and SP-D, members of the collectin family of C-type lectins, exhibit distinct ligand specificities, effects on surfactant structure, and host defense functions despite extensive structural homology. SP-A binds to dipalmitoylphosphatidylcholine (DPPC), the major surfactant lipid component, but not phosphatidylinositol (PI), whereas SP-D shows the opposite preference. Additionally, SP-A and SP-D recognize widely divergent pathogen-associated molecular patterns. Previous studies suggested that a ligand-induced surface loop conformational change unique to SP-A contributes to lipid binding affinity. To test this hypothesis and define the structural features of SP-A and SP-D that determine their ligand binding specificities, a structure-guided approach was used to introduce key features of SP-D into SP-A. A quadruple mutant (E171D/P175E/R197N/K203D) that introduced an SP-D-like loop-stabilizing calcium binding site into the carbohydrate recognition domain was found to interconvert SP-A ligand binding preferences to an SP-D phenotype, exchanging DPPC for PI specificity, and resulting in the loss of lipid A binding and the acquisition of more avid mannan binding properties. Mutants with constituent single or triple mutations showed alterations in their lipid and sugar binding properties that were intermediate between those of SP-A and SP-D. Structures of mutant complexes with inositol or methyl-mannose revealed an attenuation of the ligand-induced conformational change relative to wild-type SP-A. These studies suggest that flexibility in a key surface loop supports the distinctive lipid binding functions of SP-A, thus contributing to its multiple functions in surfactant structure and regulation, and host defense.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.6b01313DOI Listing

Publication Analysis

Top Keywords

sp-a sp-d
16
ligand binding
12
surface loop
12
lipid binding
12
sp-a
10
binding
9
binding specificities
8
surfactant structure
8
host defense
8
conformational change
8

Similar Publications

Revisiting surfactant protein D: an immune surveillance molecule bridging innate and adaptive immunity.

Front Immunol

January 2025

Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.

Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e.

View Article and Find Full Text PDF

Rhodococcus equi (R. equi) is a primary cause of pyogranulomatous pneumonia of foals between three weeks and five months of age. Early diagnosis of rhodococcal pneumonia has always been considered a preferable approach as it can lead to more successful treatment and better outcomes.

View Article and Find Full Text PDF

Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention?

Am J Physiol Lung Cell Mol Physiol

January 2025

Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom.

The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic lung condition of unknown etiology characterized by fibrosis and inflammation. Lung scarring progresses owing to cytokines and immune cells that promote inflammation and fibrosis in idiopathic pulmonary fibrosis (IPF). The anti-inflammatory and anti-fibrotic properties of the ethyl acetate extract of Clerodendrum phlomidis (CPEA), derived from the Indian plant "agnimantha," are recognized in traditional Ayurvedic medicine.

View Article and Find Full Text PDF

Objectives: This study aimed to determine the clinical significance of Krebs von den Lungen-6 (KL-6), surfactant proteins A (SP-A) and D (SP-D) in the evaluation and management of interstitial lung disease (ILD).

Methods: Serum KL-6, SP-A, SP-D levels were measured in 122 unique consecutive patients referred for connective tissue disease (CTD) associated ILD (CTD-ILD) autoantibodies and 120 "healthy" controls. Patients' charts were retrospectively reviewed and categorized as ILD and non-ILD or CTD-ILD and other ILD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!