Influence diagnostics in meta-regression model.

Res Synth Methods

Department of Biostatistics, The University of Washington, Seattle, WA, 98195, USA.

Published: September 2017

This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jrsm.1247DOI Listing

Publication Analysis

Top Keywords

perturbation scheme
16
local influence
12
influence diagnostics
8
diagnostics meta-regression
8
meta-regression model
8
influence analysis
8
influence
7
model paper
4
paper studies
4
studies influence
4

Similar Publications

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis.

Immunol Rev

January 2025

Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.

Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.

View Article and Find Full Text PDF

The study presents an intelligent, model-free current control strategy that eliminates the need for explicit plant models while efficiently reducing the effect of plant parameter perturbation. By employing a data-driven approach with fewer input features, the proposed scheme reduces the computational burden during training while maintaining high control performance. Unlike conventional model predictive current control (MPCC), which is computationally expensive because of solving optimization problems at each sample time, and requires precise plant models, the proposed method enhances system performance by addressing plant model discrepancies through data-driven techniques.

View Article and Find Full Text PDF

A cross-entropy corrected hybrid multiconfiguration pair-density functional theory for complex molecular systems.

Nat Commun

January 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.

Hybrid density functionals, such as B3LYP and PBE0, have achieved remarkable success by substantially improving over their parent methods, namely Hartree-Fock and the generalized gradient approximation, and generally outperforming the second-order Møller-Plesset perturbation theory (MP2) that is more expensive. Here, we extend the linear scheme of hybrid multiconfiguration pair-density functional theory (HMC-PDFT) by incorporating a cross-entropy ingredient to balance the description of static and dynamic correlation effects, leading to a consistent improvement on both exchange and correlation energies. The B3LYP-like translated on-top functional (tB4LYP) developed along this line not only surpasses the accuracy of its parent methods, the complete active space self-consistent field (CASSCF) and the original MC-PDFT functionals (tBLYP and tB3LYP), but also outperforms the widely used complete active space second-order perturbation theory (CASPT2).

View Article and Find Full Text PDF

Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking.

PLoS One

December 2024

Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.

Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!