Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo.

Adv Mater

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.

Published: September 2017

Nanocarrier surface chemistry plays a vital role in mediating cell internalization and enhancing delivery efficiency during in vivo chemotherapy. Inspired by the ability of proteins to alter their conformation to mediate functions, a pH-/thermal-/glutathione-responsive polymer zipper consisting of cell-penetrating poly(disulfide)s and thermosensitive polymers bearing guanidinium/phosphate (Gu /pY ) motifs to spatiotemporally tune the surface composition of nanocarriers for precise tumor targeting and efficient drug delivery is developed. Surface engineering allows the nanocarriers to remain undetected during blood circulation and favors passive accumulation at tumor sites, where the acidic microenvironment and photothermal heating break the pY /Gu binding and rupture the zipper, thereby exposing the penetrating shell and causing enhanced cellular uptake via counterion-/thiol-/receptor-mediated endocytosis. The in vivo study demonstrates that by manipulating the surface states on command, the nanocarriers show longer blood circulation time, minimized uptake and drug leakage in normal organs, and enhanced accumulation and efficient drug release at tumor sites, greatly inhibiting tumor growth with only slight damage to normal tissues. If integrated with a photothermal dye approved by the U.S. Food and Drug Administration (FDA), polymer zipper would provide a versatile protocol for engineering nanomedicines with high selectivity and efficiency for clinical cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201702311DOI Listing

Publication Analysis

Top Keywords

polymer zipper
12
precise tumor
8
tumor targeting
8
efficient drug
8
blood circulation
8
tumor sites
8
tumor
5
engineering surface
4
surface smart
4
nanocarriers
4

Similar Publications

Chemotherapeutic drugs often fail to provide long-term efficacy due to their lack of specificity and high toxicity. To enhance the biosafety and reduce the side effects of these drugs, various nanocarrier delivery systems have been developed. In this study, we loaded the anticancer drug doxorubicin (DOX) and an MRI contrast agent into silica nanoparticles, coating them with pH-responsive and tumor cell-targeting polymers.

View Article and Find Full Text PDF

Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.

View Article and Find Full Text PDF

Microspheres based on galactomannan and Spondias purpurea L. extract to increase antifungal and antibiofilm efficacy against Candida spp.

Int J Biol Macromol

January 2025

Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-900 Fortaleza, CE, Brazil. Electronic address:

The ongoing problem of an increasing resistance of Candida spp. to available antifungals, has made it necessary the search for new therapeutic alternatives. The aim of this work was to develop a microsphere based on Caesalpinia ferrea galactomannan and Spondias purpurea L.

View Article and Find Full Text PDF

Expanding access to maggot containment dressings through redesign and innovation.

Int Wound J

January 2025

Applied BioSciences, Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales, Australia.

There are two major styles of maggot debridement dressings: (1) confinement dressings that form a cage around the wound, and (2) containment dressings that completely surround the maggots within a sealed porous bag. For producers and clinicians wanting to prepare containment dressings using readily available polyester bags, it is currently difficult to seal these bags without expensive high-temperature plastic welders. This study aimed to identify simple and affordable methods for sealing maggots within polyester net bags.

View Article and Find Full Text PDF

Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!