Co-expression network analyses provide insights into the molecular interactions underlying complex traits and diseases. In this study, co-expression network analysis was performed to detect expression patterns (modules or clusters) of microRNAs (miRNAs) during lactation, and to identify miRNA regulatory mechanisms for milk yield and component traits (fat, protein, somatic cell count (SCC), lactose, and milk urea nitrogen (MUN)) via miRNA target gene enrichment analysis. miRNA expression (713 miRNAs), and milk yield and components (Fat%, Protein%, lactose, SCC, MUN) data of nine cows at each of six different time points (day 30 (D30), D70, D130, D170, D230 and D290) of an entire lactation curve were used. Four modules or clusters (GREEN, BLUE, RED and TURQUOISE) of miRNAs were identified as important for milk yield and component traits. The GREEN and BLUE modules were significantly correlated (|| > 0.5) with milk yield and lactose, respectively. The RED and TURQUOISE modules were significantly correlated (|| > 0.5) with both SCC and lactose. In the GREEN module, three abundantly expressed miRNAs (miR-148a, miR-186 and miR-200a) were most significantly correlated to milk yield, and are probably the most important miRNAs for this trait. DDR1 and DDHX1 are hub genes for miRNA regulatory networks controlling milk yield, while HHEX is an important transcription regulator for these networks. miR-18a, miR-221/222 cluster, and transcription factors HOXA7, and NOTCH 3 and 4, are important for the regulation of lactose. miR-142, miR-146a, and miR-EIA17-14144 (a novel miRNA), and transcription factors in the SMAD family and MYB, are important for the regulation of SCC. Important signaling pathways enriched for target genes of miRNAs of significant modules, included protein kinase A and PTEN signaling for milk yield, eNOS and Noth signaling for lactose, and TGF β, HIPPO, Wnt/β-catenin and cell cycle signaling for SCC. Relevant enriched gene ontology (GO)-terms related to milk and mammary gland traits included cell differentiation, G-protein coupled receptor activity, and intracellular signaling transduction. Overall, this study uncovered regulatory networks in which miRNAs interacted with each other to regulate lactation traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536048PMC
http://dx.doi.org/10.3390/ijms18071560DOI Listing

Publication Analysis

Top Keywords

milk yield
32
co-expression network
12
yield component
12
component traits
12
milk
10
mirnas
8
yield
8
modules clusters
8
mirna regulatory
8
scc lactose
8

Similar Publications

Exploring the Role of Salt Supplementation on Milk Composition, Fatty Acids, and Insulin Response in Lactating Camels.

Vet Sci

January 2025

Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.

Camel milk is a valuable food source with unique nutritional properties and potential health benefits. This study investigated the influence of high dietary salt on milk composition and fatty acid (FA) profile as well as insulin regulation in dairy camels. Twelve multiparous female camels were used in a crossover design with two treatments: control concentrate (CON; 1.

View Article and Find Full Text PDF

The development of thickened fermented rice milk formulation for people with dysphagia: A view of multiple in vitro simulation methods.

Food Res Int

February 2025

College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China. Electronic address:

Based on the huge blank of thickened fluid staple food for people with dysphagia, multiple in vitro simulations were utilized to develop the thickened fermented rice milk. Here, the effect of amylase content, hydrolysis time and thickener content were considered. The rheological study and Cambridge throat evaluation revealed that hydrolysis could significantly reduce the viscosity and yield stress of fermented rice milk, accompanied by the decreased swallowing residue.

View Article and Find Full Text PDF

There is growing interest in developing protein-rich foods for the elderly using plant proteins. The application of soy protein isolate (SPI) as a model protein to create protein-rich, custard-like soft foods presents a unique opportunity for innovative formulations tailored to those within the aging population suffering from swallowing difficulties. This study investigated the physicochemical and textural properties of custard-type soft food formulations developed using SPI for dysphagic elderly individuals, with the goal of achieving characteristics similar to those of optimal milk protein-based counterparts.

View Article and Find Full Text PDF

Lactational performance effects of 3-nitrooxypropanol supplementation to dairy cows: A meta-regression.

J Dairy Sci

February 2025

Department of Animal Science, The Pennsylvania State University, University Park, PA 16802. Electronic address:

A meta-regression was conducted to determine the production effects of 3-nitrooxypropanol (3-NOP) and investigate their associations with dose, dietary nutrient composition, and supplementation length in dairy cows. Forty treatment and control mean comparisons extracted from 21 studies conducted or published between 2014 to 2024 were used in the meta-regression. Response variables were DMI, milk yield (MY), ECM yield, ECM feed efficiency, BW, BW change, and concentrations of milk fat, true protein, lactose, and MUN.

View Article and Find Full Text PDF

Microbial fermentation of agro-industrial residues is gaining significant traction as a sustainable and economically viable approach in bioprocessing. This study explored lactic acid production from selected agro-industrial residues: pre-treated sugarcane waste, potato peel waste, or milk processing waste with alfalfa pellets using strains of organic origin. Five homo-fermentative strains (VITJ1, VITJ2, VITJ3, VITJ4, and VITJ5) were assessed for compatibility and formed into 15 consortia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!