The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b01547 | DOI Listing |
ACS Nano
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan.
Edge contacts offer a significant advantage for enhancing the performance of semiconducting transition metal dichalcogenide (TMDC) devices by interfacing with the metallic contacts on the lateral side, which allows the encapsulation of all of the channel material. However, despite intense research, the fabrication of feasible electrical edge contacts to TMDCs to improve device performance remains a great challenge, as interfacial chemical characterization via conventional methods is lacking. A major bottleneck in explicitly understanding the chemical and electronic properties of the edge contact at the metal-two-dimensional (2D) semiconductor interface is the small cross section when characterizing nominally one-dimensional edge contacts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFCancer Med
January 2025
Division of Medical Oncology and Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Izumo, Japan.
Background: Cancer-associated thromboembolism has been thoroughly investigated in previous studies, and direct oral anticoagulants (DOACs) were established for the treatment and prevention of venous thromboembolism (VTE). However, the risks of cancer-associated arterial thromboembolism (ATE) and the efficacy of DOACs remain unclear.
Objectives: To evaluate the risk factors and the clinical activity of edoxaban (EDO) for the prevention of ATE in patients with advanced lung cancer.
ACS Nano
January 2025
Key Laboratory of Photoelectronic Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 260101, China.
Nano Lett
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
Revealing the structure stability and evolution of gold nanocrystals at the atomic scale is crucial to their versatile applications; however, the fundamental mechanism remains elusive due to the lack of characterizations. In this work, the structural evolution of two types of Au nanobipyramids (Au NBPs) at elevated temperatures is monitored through electron microscopy analysis, and there is a sharp distinction between their structure stability despite that they possess the same crystalline structure. Detailed material characterization reveals that the surface alloying of residual Ag with Au (customized Ag armor) can greatly inhibit the Au atom diffusion and contribute remarkably to the stability and surface-enhanced Raman scattering improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!