Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration.

Ecol Appl

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA.

Published: October 2017

An often-cited benefit of river restoration is an increase in biodiversity or shift in composition to more desirable taxa. Yet, hard manipulations of habitat structure often fail to elicit a significant response in terms of biodiversity patterns. In contrast to conventional wisdom, the dispersal of organisms may have as large an influence on biodiversity patterns as environmental conditions. This influence of dispersal may be particularly influential in river networks that are linear branching, or dendritic, and thus constrain most dispersal to the river corridor. As such, some locations in river networks, such as isolated headwaters, are expected to respond less to environmental factors and less by dispersal than more well-connected downstream reaches. We applied this metacommunity framework to study how restoration drives biodiversity patterns in river networks. By comparing assemblage structure in headwater vs. more well-connected mainstem sites, we learned that headwater restoration efforts supported higher biodiversity and exhibited more stable ecological communities compared with adjacent, unrestored reaches. Such differences were not evident in mainstem reaches. Consistent with theory and mounting empirical evidence, we attribute this finding to a relatively higher influence of dispersal-driven factors on assemblage structure in more well-connected, higher order reaches. An implication of this work is that, if biodiversity is to be a goal of restoration activity, such local manipulations of habitat should elicit a more profound response in small, isolated streams than in larger downstream reaches. These results offer another significant finding supporting the notion that restoration activity cannot proceed in isolation of larger-scale, catchment-level degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.1602DOI Listing

Publication Analysis

Top Keywords

biodiversity patterns
12
river networks
12
ecological communities
8
manipulations habitat
8
downstream reaches
8
assemblage structure
8
restoration activity
8
restoration
7
biodiversity
6
river
5

Similar Publications

The management and creation of Marine Protected Areas (MPAs) is currently under great focus, with international organisations aiming to protect 30% of our oceans by 2030. The success of MPAs depends on a nuanced understanding of local ecological dynamics and threats, which can significantly influence ecosystem balance. Herbivory can be a stressor for foundation species, namely kelp forests, contributing to their decline in several regions of the globe.

View Article and Find Full Text PDF

Temperature alters bacterial community structure in sediment of mountain stream.

Sci Rep

December 2024

Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.

Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities.

View Article and Find Full Text PDF

This study evaluates the growth, survival pressures, and community dynamics of Barringtonia racemosa (L.) Spreng. populations in Jiulong Mountain and Suixi County, Guangdong Province.

View Article and Find Full Text PDF

Background: Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference.

Methods: Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed.

View Article and Find Full Text PDF

Microbiome and metabolome analysis in smoking and non-smoking pancreatic ductal adenocarcinoma patients.

BMC Microbiol

December 2024

Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.

Background: Smoking is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC). This study aimed to investigate the effects of smoking on the pancreatic microbiome and metabolome in resectable and unresectable male PDAC patients.

Methods: The pancreatic tissue samples were collected from resectable PDACs via surgery and unresectable PDACs via endoscopic ultrasound fine needle aspiration (EUS-FNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!