Background: Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies.
Methods: Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines.
Results: The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in and ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent.
Conclusion: With an adequate methodology, it is possible to translate to the clinical practice the latest advances in precision oncology, integrating under the same platform the identification of somatic and germline genomic alterations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511795 | PMC |
http://dx.doi.org/10.1002/mgg3.291 | DOI Listing |
Pathol Res Pract
January 2025
Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
Prostate cancer (PC) represents one of the leading causes of cancer-related morbidity and mortality in men, requiring further understanding to improve diagnosis and treatment. Germline BRCA1/2 mutations, primarily identified in other hereditary cancers, confer an increased risk of developing PC; thus, testing is essential to assess cancer risk, guiding preventive strategies and screening. Recently, somatic BRCA1/2 mutations have emerged as pivotal predictive biomarkers of responsiveness to the poly ADP-ribose polymerase (PARP) inhibitors.
View Article and Find Full Text PDFGenes Dev
December 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain.
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.
View Article and Find Full Text PDFCurr Protoc
January 2025
Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
Mesothelioma is a lethal cancer of the serosal lining of the body cavities. Risk factors include environmental and genetic factors. Asbestos exposure is considered the principal environmental risk factor, but other carcinogenic mineral fibers, such as erionite, also have a causal role.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, Australia.
We describe the phenotypic and genotypic spectrum of patients with vascular anomaly (VA) in a paediatric multi-disciplinary VA clinic. We measured the clinical utility of genotyping by comparing pre and posttest diagnosis and management. A 46-month retrospective analysis occurred for 250 patients offered genetic testing in the VA clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!