This study was to examine the influences of manual acupuncture (MA) and electrical heat corresponding to reinforcing methods on nitric oxide (NO) release over the skin regions in humans. A device with collecting solution was taped to the skin surface along pericardium (PC) or lung (LU) meridian. Acupuncture needles were gently inserted into PC 4 with reinforcing stimulation (low force/rate) for 20 minutes in the MA group. LU11 on the finger was heated (43-44°C) by electrical heat for 20 minutes. Biocapture was consecutively conducted for two 20-minute intervals during and after each treatment. Total nitrite and nitrate (NO ) in the collecting samples were quantified using chemiluminescence in blinded fashion. Baseline NO levels are higher and tended to be higher over PC and LU acupoints during the 1st biocapture. NO levels over PC regions were consistently increased by MA during both intervals. NO concentrations over LU acupoints were increased and tended to be increased by electrical heat in the 1st and 2nd biocapture. The results suggest that reinforcing MA and electrical heat induce NO released from the local skin regions with higher levels at acupoints, which improve local circulation and contribute to the beneficial effects of the therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498898 | PMC |
http://dx.doi.org/10.1155/2017/4694238 | DOI Listing |
Sci Rep
January 2025
College of Economics and Finance, Huaqiao University, Quanzhou, 362021, China.
High carbon sectors (agriculture, industry, construction, and transportation) contribute nearly 85% of carbon emissions, highlighting the urgent need for transitioning towards cleaner energy structures in these sectors. This study utilizes the undesirable SBM model to assess TFEE (total factor energy efficiency) across the total sector and high carbon sectors. It decomposes TFEE from an energy structural perspective into coal, oil, natural gas, and electric heat efficiencies.
View Article and Find Full Text PDFData Brief
February 2025
Economic and Social Research Institute, Dublin, Ireland.
This data article describes the operation of gas and oil fuelled residential heating systems in Ireland. Based on almost 10,000 homes, the data presents information on the operation of domestic heating systems (whether turned on/off by the user), and the firing of the boiler during 2-hour slots across a period of two years ending in September 2021 by geographical region. The electrification of heating is government policy, with the ambition that hundreds of thousands of homes will switch from oil and gas fuelled residential heating to heat pumps.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, University of Cádiz, 11510, Puerto Real, Spain.
To reduce greenhouse emissions and producing electricity with the smallest environmental impact, developing solar power technology is one of the most important milestones to achieve. Thus, to improve the efficiency of the concentrated solar power (CSP) plants, with lower environmental impact, is of great interest. This work reports the development of nanofluids, a colloidal suspension of nanomaterials in a fluid, based on an environment-friendly base fluid for improving the performance of the heat transfer process in CSP plants.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, Mandi, Himachal Pradesh, 175075, INDIA.
Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!