Torque, but not FliL, regulates mechanosensitive flagellar motor-function.

Sci Rep

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Published: July 2017

The stator-complex in the bacterial flagellar motor is responsible for surface-sensing. It remodels in response to perturbations in viscous loads, recruiting additional stator-units as the load increases. Here, we tested a hypothesis that the amount of torque generated by each stator-unit modulates its association with the rotor. To do this, we measured stator-binding to the rotor in mutants in which motors reportedly develop lower torque compared to wildtype motors. First, we employed a strain lacking fliL. Contrary to earlier reports, measurements indicated that the torque generated by motors in the fliL strain was similar to that in the wildtype, at high loads. In these motors, stator-binding was unchanged. Next, experiments with a paralyzed strain indicated that the stator-binding was measurably weaker when motors were unable to generate torque. An analytical model was developed that incorporated an exponential dependence of the unit's dissociation rate on the force delivered to the rotor. The model provided accurate fits to measurements of stator-rotor binding over a wide range of loads. Based on these results, we propose that the binding of each stator-unit is enhanced by the force it develops. Furthermore, FliL does not play a significant role in motor function in E. coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514156PMC
http://dx.doi.org/10.1038/s41598-017-05521-8DOI Listing

Publication Analysis

Top Keywords

torque generated
8
torque
5
motors
5
torque flil
4
flil regulates
4
regulates mechanosensitive
4
mechanosensitive flagellar
4
flagellar motor-function
4
motor-function stator-complex
4
stator-complex bacterial
4

Similar Publications

This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

Aiming at the control challenges faced by unmanned surface vessels (USVs) in complex environments, such as nonlinearities, parameter uncertainties, and environmental perturbations, we propose a non-singular terminal integral sliding mode control strategy based on an extended state observer (ESO). The strategy first employs a third-order linear extended state observer to estimate the total disturbances of the USV system, encompassing both external disturbances and internal nonlinearities. Subsequently, a backstepping sliding mode controller based on the Lyapunov theory is designed to generate the steering torque control commands for the USV.

View Article and Find Full Text PDF

Background: Objective training load (TL) indexes used in resistance training lack physiological significance. This study was aimed to provide a muscle physiology-based approach for quantifying TL in resistance exercises (REs).

Methods: Following individual torque-velocity profiling, fifteen participants (11 healthy males, stature: 178.

View Article and Find Full Text PDF

Objective: The effect of different attachment positions on torque control during the labialization of maxillary lateral incisors with clear aligners was evaluated using finite element analysis.

Methods: Anatomical data acquired through cone-beam computed tomography, combined with the design of 0.625-mm-thick aligners and horizontal attachments, were integrated into the software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!