Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacteria of the genus express homologs of eukaryotic α- and β-tubulin, called BtubA and BtubB (BtubA/B), that have been observed to assemble into filaments in the presence of GTP. BtubA/B polymers are proposed to be composed by two to six protofilaments in contrast to that , where they have been reported to form 5-protofilament tubes named bacterial microtubules (bMTs). The genes likely entered the lineage via horizontal gene transfer and may be derived from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is reversible and that BtubA/B folding does not require chaperones. To better understand BtubA/B filament behavior and gain insight into the evolution of microtubule dynamics, we characterized BtubA/B assembly using a combination of polymerization kinetics assays and microscopy. Like eukaryotic microtubules, BtubA/B filaments exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by BtubA/B polymerization drives a stochastic mechanism of filament disassembly that occurs via polymer breakage and/or fast continuous depolymerization. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of BtubA/B filament fragments. Unlike MTs, polymerization of BtubA/B requires KCl, which reduces the critical concentration for BtubA/B assembly and induces it to form stable mixed-orientation bundles in the absence of any additional BtubA/B-binding proteins. The complex dynamics that we observe in stabilized and unstabilized BtubA/B filaments may reflect common properties of an ancestral eukaryotic tubulin polymer. Microtubules are polymers within all eukaryotic cells that perform critical functions; they segregate chromosomes, organize intracellular transport, and support the flagella. These functions rely on the remarkable range of tunable dynamic behaviors of microtubules. Bacterial tubulin A and B (BtubA/B) are evolutionarily related proteins that form polymers. They are proposed to be evolved from the ancestral eukaryotic tubulin, a missing link in microtubule evolution. Using microscopy and biochemical approaches to characterize BtubA/B assembly , we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules but differ in how they self-associate into bundles and how this bundling affects their stability. Our results demonstrate the diversity of mechanisms through which tubulin homologs promote filament dynamics and monomer turnover.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585714 | PMC |
http://dx.doi.org/10.1128/JB.00211-17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!