Prelimbic α-adrenoceptors are involved in the regulation of depressive-like behaviors in the hemiparkinsonian rats.

Brain Res Bull

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710061, China. Electronic address:

Published: September 2017

At present, it is not clear whether α-adrenoceptors in the prelimbic cortex (PrL) are involved in Parkinson's disease-related depression. Here we examined effects of PrL α-adrenoceptors on depressive-like behaviors in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests compared to sham-operated rats. Intra-PrL injection of α-adrenoceptor agonist phenylephrine induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-PrL injection of α-adrenoceptor antagonist benoxathian produced antidepressant effects in two groups of rats. Intra-PrL injection of phenylephrine increased the mean firing rate of PrL pyramidal neurons in both sham-operated and the lesioned rats, while benoxathian decreased the mean firing rate of the neurons. Compared to sham-operated rats, the duration of phenylephrine and benoxathian action on the firing rate of the pyramidal neurons was shortened in the lesioned rats. Neurochemical results showed that intra-PrL injection of phenylephrine or benoxathian increased or decreased dopamine and noradrenaline and serotonin levels in the medial prefrontal cortex, ventral hippocampus and habenula in sham-operated and the lesioned rats, respectively. Altogether, these results suggest that activation and blockade of α-adrenoceptors in the PrL change the firing activity of the pyramidal neurons, and then increase or decrease levels of three monoamines in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors. Additionally, the results also suggest that the dopaminergic lesion leads to hypofunctionality of α-adrenoceptors on pyramidal neurons of the PrL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2017.07.011DOI Listing

Publication Analysis

Top Keywords

depressive-like behaviors
16
intra-prl injection
16
lesioned rats
16
pyramidal neurons
16
rats intra-prl
12
sham-operated lesioned
12
firing rate
12
rats
9
involved regulation
8
regulation depressive-like
8

Similar Publications

Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored.

View Article and Find Full Text PDF

Esketamine, a newly developed antidepressant, is the subject of this research which seeks to explore its impact on depressive symptoms in neuropathic pain mice and the potential molecular mechanisms involved. Through transcriptome sequencing and bioinformatics analysis combined with in vivo studies, it was identified that esketamine markedly boosts the levels of the m6A methyltransferase METTL3 and the AMPA receptor GluA1 subunit. Esketamine activates METTL3, allowing it to bind with GluA1 mRNA, promoting m6A modification, thereby enhancing GluA1 expression at synapses.

View Article and Find Full Text PDF

Blocking the p38 MAPK Signaling Pathway in the Rat Hippocampus Alleviates the Depressive-like Behavior Induced by Spinal Cord Injury.

ACS Chem Neurosci

January 2025

Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.

Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.

View Article and Find Full Text PDF

Exercise in heart failure with preserved ejection fraction (HFpEF) remains a hot topic, although current treatment strategies have not been shown to improve the long-term prognosis of HFpEF. Previous studies have mostly focused on the roles of endurance training, the mechanisms underlying long-term voluntary exercise have not been elucidated. The purpose of the present analysis was to evaluate alterations in cardiac function in HFpEF mice (HFpEF-Sed) after 6 weeks of voluntary running (HFpEF-Ex), investigate mechanisms, and compare the effects with fluoxetine (HFpEF-FLX).

View Article and Find Full Text PDF

Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: implicating core fucosylation has an antidepressant potential.

J Biol Chem

January 2025

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8) and heterozygous KO (Fut8) mice contrasted to the wild-type (Fut8) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!