5-Formyl-dC (fdC) and 5-carboxy-dC (cadC) are newly discovered bases in the mammalian genome that are supposed to be substrates for base excision repair (BER) in the framework of active demethylation. The bases are recognized by the monofunctional thymine DNA glycosylase (Tdg), which cleaves the glycosidic bond of the bases to give potentially harmful abasic sites (AP-sites). Because of the turnover of fdC and cadC during cell state transitions, it is an open question to what extent such harmful AP-sites may accumulate during these processes. Here, we report the development of a new reagent that in combination with mass spectrometry (MS) allows us to quantify the levels of AP-sites. This combination also allowed the quantification of β-elimination (βE) products, which are repair intermediates of bifunctional DNA glycosylases. In combination with feeding of isotopically labeled nucleosides, we were able to trace the intermediates back to their original nucleobases. We show that, while the steady-state levels of fdC and cadC are substantially increased in Tdg-deficient cells, those of both AP- and βE-sites are unaltered. The levels of the detected BER intermediates are 1 and 2 orders of magnitude lower than those of cadC and fdC, respectively. Thus, neither the presence of fdC nor that of cadC in stem cells leads to the accumulation of harmful AP- and βE-site intermediates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b04131 | DOI Listing |
Epigenomes
May 2024
Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
In living cells, some reactions can be conducted by more than one enzyme and sometimes it is difficult to establish which enzyme is responsible. Such is the case with proteins from the TET family, capable of converting 5-methyl-2'-deoxycytidine (5-mdC) in DNA to 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC) and further to 5-formyl-2'-deoxycytidine (5-fdC) and 5-carboxy-2'-deoxycytidine (5-cadC). The estimation of the efficiency of particular TETs in particular oxidative reactions and different cell types is important but experimentally difficult.
View Article and Find Full Text PDFClin Immunol
June 2022
Dokuz Eylül University, Institute of Health Sciences, Department of Molecular Medicine, Izmir, Turkey; Dokuz Eylül University, Faculty of Medicine, Department of Medical Biochemistry, Izmir, Turkey.
Background: Systemic sclerosis (SSc) is a rare autoimmune disease characterized by progressive fibrosis of the skin and internal organs. Besides genetics risk factors, understanding the epigenetic modifications in SSc has been gaining acceleration in recent years. Epigenetic modifications are reversible and defined as druggable targets.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany.
Cellular DNA is composed of four canonical nucleosides (dA, dC, dG and T), which form two Watson-Crick base pairs. In addition, 5-methylcytosine (mdC) may be present. The methylation of dC to mdC is known to regulate transcriptional activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2021
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany.
Epigenetic programming of cells requires methylation of deoxycytidines (dC) to 5-methyl-dC (mdC) followed by oxidation to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). Subsequent transformation of fdC and cadC back to dC by various pathways establishes a chemical intra-genetic control circle. One of the discussed pathways involves the Tdg-independent deformylation of fdC directly to dC.
View Article and Find Full Text PDFChemistry
June 2021
Ludwigs-Maximilian-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!