Transglutaminase 2 (TG2) plays important roles in cell survival and cancer progression. In this study, we examined TG2 expression in specimen of 194 patients diagnosed with non-small cell lung cancer (NSCLC), and found that the TG2 gene expression was significantly higher in lung cancer tissues as compared to paired incisal marginal tissues or normal tissues. Our data revealed that patients with lower level of TG2 expression detected in cancer tissues had longer disease free survival and overall survival as compared to the patients with higher TG2 expression. We also found that TG2 expression level correlated to NSCLC recurrence. These results suggest a potential prognosis impact of TG2 for NSCLC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542209PMC
http://dx.doi.org/10.18632/oncotarget.17374DOI Listing

Publication Analysis

Top Keywords

tg2 expression
16
lung cancer
12
non-small cell
8
cell lung
8
cancer tissues
8
tg2
7
cancer
5
patients
5
expression
5
prognostic transglutaminase
4

Similar Publications

Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.

View Article and Find Full Text PDF

Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury.

View Article and Find Full Text PDF

Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.

View Article and Find Full Text PDF

Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs.

Life Sci

February 2025

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:

Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.

Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!