Backbone Engineered γ-Peptide Amphitropic Gels for Immobilization of Semiconductor Quantum Dots and 2D Cell Culture.

Langmuir

Department of Chemistry, Indian Institution of Science Education and Research , Homi Bhabha Road, Pune 411008, India.

Published: August 2017

We are reporting a spontaneous supramolecular assembly of backbone engineered γ-peptide scaffold and its utility in the immobilization of semiconductor quantum dots and in cell culture. The stimulating feature of this γ-peptide scaffold is that it efficiently gelates both aqueous phosphate buffers and aromatic organic solvents. A comparative and systematic investigation reveals that the greater spontaneous self-aggregation property of γ-peptide over the α- and β-peptide analogues is mainly due to the backbone flexibility, increased hydrophobicity, and π-π stacking of γ-phenylalanine residues. The hydrogels and organogels obtained from the γ-peptide scaffold have been characterized through field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), FT-IR, circular dichroism (CD), wide-angle X-ray diffraction, and rheometric study. Additionally, the peptide hydrogel has displayed a stimuli-responsive and thixotropic signature, which leads to the injectable hydrogels. 2D cell culture studies using normal and cancer cell lines reveal the biocompatibility of γ-peptide hydrogels. Further, the immobilization of semiconductor core-shell quantum dots in the transparent γ-peptide organogels showed ordered arrangement of quantum dots along the peptide fibrillar network with retaining photophysical property. Overall, γ-peptide scaffolds may serve as potential templates for the design of new functional biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b01283DOI Listing

Publication Analysis

Top Keywords

quantum dots
16
immobilization semiconductor
12
cell culture
12
γ-peptide scaffold
12
backbone engineered
8
γ-peptide
8
engineered γ-peptide
8
semiconductor quantum
8
dots cell
8
property γ-peptide
8

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!