Zirconium-89 is a positron-emitting radionuclide of high interest for medical imaging applications with positron emission tomography (PET). For the introduction of this radiometal into biologically active targeting vectors, the chelating agent desferrioxamine B (DFO) is commonly applied. However, DFO is known to form Zr complexes of limited in vivo stability. Herein we describe the rational design and chemical development of a new macrocyclic four-hydroxamate-bearing chelating agent-1,10,19,28-tetrahydroxy-1,5,10,14,19,23,28,32-octaazacyclohexatriacontan-2,6,11,15,20,24,29,33-octaone (CTH36)-for the stable complexation of Zr . For this purpose, we first performed computational studies to determine the optimal chelator geometry before we developed different synthesis pathways toward the target structures. The best results were obtained using an efficient solution-phase-based synthesis strategy toward the target chelating agent. To enable efficient and chemoselective conjugation to biomolecules, a tetrazine-modified variant of CTH36 was also developed. The excellent conjugation characteristics of the so-functionalized chelator were demonstrated on the example of the model peptide TCO-c(RGDfK). We determined the optimal Zr radiolabeling parameters for CTH36 as well as its bioconjugate, and found that Zr radiolabeling proceeds efficiently under very mild reaction conditions. Finally, we performed comparative complex stability tests for Zr-CHT36-c(RGDfK) and Zr-DFO-c(RGDfK), showing improved complex stability for the newly developed chelator CTH36.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.201700377 | DOI Listing |
Amino Acids
January 2025
Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Front Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Plants (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.
View Article and Find Full Text PDFNutrients
January 2025
Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile.
Unlabelled: Dental caries remains a prevalent chronic disease driven by dysbiosis in the oral biofilm, with playing a central role in its pathogenesis.
Objective: This study aimed to assess the effect of D-tagatose on cariogenic risk by analyzing randomized clinical trials (RCTs).
Methods: A systematic literature review was conducted targeting RCTs published up to 2024 in eight databases and two gray literature sources.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!