Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for an enhanced anti-inflammatory effect.

Biomater Sci

Department of Bio and Brain Engineering and KAIST Institute of Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Published: July 2017

A surgical suture is a medical device to close the wound site of skin and organs but excessive inflammation surrounding the suture can disrupt the wound healing process. Although post-operative prescription of anti-inflammatory drugs is used to manage the inflammation, the need for local drug delivery systems has been rising because of low bioavailability and fast clearance of drugs. In this work, we proposed a new strategy for a local anti-inflammatory device by incorporating macrophage-targeted anti-inflammatory nanoparticles into the suture. For macrophage-targeted anti-inflammatory nanoparticles, poly(lactic-co-glycolic) nanoparticles were loaded with anti-inflammatory drug diclofenac and decorated with polyethylene glycol and macrophage-targeting ligand mannose. These anti-inflammatory nanoparticles released diclofenac sustainably, and targeted activated macrophages efficiently. After nanoparticle optimization, a suture was coated with multiple layers of macrophage-targeted anti-inflammatory nanoparticles using a dip coating process. The suture releasing macrophage-targeted anti-inflammatory nanoparticles showed an enhanced anti-inflammatory effect in both macrophage culture and excisional wound healing animal models compared to a free drug molecule-coated suture. These results suggest that anti-inflammatory nanoparticle-coated sutures have great potential as an effective local delivery system to reduce inflammation and pain at the wound site.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7bm00345eDOI Listing

Publication Analysis

Top Keywords

anti-inflammatory nanoparticles
20
macrophage-targeted anti-inflammatory
16
anti-inflammatory
11
surgical suture
8
suture releasing
8
releasing macrophage-targeted
8
nanoparticles enhanced
8
enhanced anti-inflammatory
8
wound site
8
wound healing
8

Similar Publications

Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.

View Article and Find Full Text PDF

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Bactericidal Hemostatic Sponge: A Point of Care Solution to Combat Traumatic Injury.

Adv Healthc Mater

January 2025

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!